設(shè)函數(shù).
(1)證明:是奇函數(shù);
(2)求的單調(diào)區(qū)間;
(3)寫出函數(shù)圖象的一個對稱中心.
(1) (2) 單調(diào)增區(qū)間有; (3) 。
解析試題分析:(1)易知函數(shù)的定義域為,,所以是奇函數(shù)!4分
(2)令又也為單調(diào)遞增函數(shù),所以函數(shù)單調(diào)增區(qū)間有。……………………6分
(3) 4分
考點:函數(shù)的奇偶性;函數(shù)的單調(diào)性;函數(shù)的對稱性。
點評:(1)本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用。屬于基礎(chǔ)題型。(2)判斷函數(shù)的奇偶性有兩步:一求函數(shù)的定義域,看定義域是否關(guān)于原點對稱;二判斷與的關(guān)系。若定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。(3)復(fù)合函數(shù)的單調(diào)性的判斷只需用四個字:同增異減。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知對于任意實數(shù)滿足,當(dāng)時,.
(1)求并判斷的奇偶性;
(2)判斷的單調(diào)性,并用定義加以證明;
(3)已知,集合,
集合,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分8分)
某商店經(jīng)營的消費品進(jìn)價每件14元,月銷售量(百件)與銷售價格(元)的關(guān)系如下圖,每月各種開支2000元.
(1)寫出月銷售量(百件)與銷售價格(元)的函數(shù)關(guān)系;
(2)寫出月利潤(元)與銷售價格(元)的函數(shù)關(guān)系;
(3)當(dāng)商品價格每件為多少元時,月利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像與軸有兩個交點
(1)設(shè)兩個交點的橫坐標(biāo)分別為試判斷函數(shù)有沒有最大值或最小值,并說明理由.
(2)若與在區(qū)間上都是減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù),,其中,設(shè).
(1)判斷的奇偶性,并說明理由;
(2)若,求使成立的x的集合。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)對定義域分別是、的函數(shù)、,
規(guī)定:函數(shù)
已知函數(shù),.
(1)求函數(shù)的解析式;
⑵對于實數(shù),函數(shù)是否存在最小值,如果存在,求出其最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點的實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 已知是方程的兩個不等實根,函數(shù)的定義域為.
⑴當(dāng)時,求函數(shù)的值域;
⑵證明:函數(shù)在其定義域上是增函數(shù);
⑶在(1)的條件下,設(shè)函數(shù),
若對任意的,總存在,使得成立,
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù).
(1)作出函數(shù)的圖象;
(2)寫出函數(shù)的單調(diào)區(qū)間;
(3)判斷函數(shù)的奇偶性,并用定義證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com