【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(1)a和c的值;
(2)cos(B﹣C)的值.

【答案】
(1)解:∵ =2,cosB= ,

∴cacosB=2,即ac=6①,

∵b=3,

∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,

∴a2+c2=13②,

聯(lián)立①②得:a=3,c=2;


(2)解:在△ABC中,sinB= = = ,

由正弦定理 = 得:sinC= sinB= × = ,

∵a=b>c,∴C為銳角,

∴cosC= = = ,

則cos(B﹣C)=cosBcosC+sinBsinC= × + × =


【解析】(1)利用平面向量的數(shù)量積運算法則化簡 =2,將cosB的值代入求出ac=6,再利用余弦定理列出關系式,將b,cosB以及ac的值代入得到a2+c2=13,聯(lián)立即可求出ac的值;(2)由cosB的值,利用同角三角函數(shù)間基本關系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,進而求出cosC的值,原式利用兩角和與差的余弦函數(shù)公式化簡后,將各自的值代入計算即可求出值.
【考點精析】本題主要考查了兩角和與差的余弦公式和余弦定理的定義的相關知識點,需要掌握兩角和與差的余弦公式:;余弦定理:;;才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是(
A.f(x)=
B.f(x)=x3
C.f(x)=( x
D.f(x)=3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】乒乓球臺面被網(wǎng)分成甲、乙兩部分,如圖,甲上有兩個不相交的區(qū)域A,B,乙被劃分為兩個不相交的區(qū)域C,D,某次測試要求隊員接到落點在甲上的來球后向乙回球,規(guī)定:回球一次,落點在C上記3分,在D上記1分,其它情況記0分.對落點在A上的來球,小明回球的落點在C上的概率為 ,在D上的概率為 ;對落點在B上的來球,小明回球的落點在C上的概率為 ,在D上的概率為 .假設共有兩次來球且落在A,B上各一次,小明的兩次回球互不影響,求:

(1)小明兩次回球的落點中恰有一次的落點在乙上的概率;
(2)兩次回球結(jié)束后,小明得分之和ξ的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,, 平面,Q是AD的中點,M是棱PC上的點,,.

(1)求證:平面;

(2)若平面QMB與平面PDC所成的銳二面角的大小為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是(
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三名大學生參加學校組織的“國學達人”挑戰(zhàn)賽, 每人均有兩輪答題機會,當且僅當?shù)谝惠啿贿^關時進行第二輪答題.根據(jù)平時經(jīng)驗,甲、乙、丙三名大學生每輪過關的概率分別為,且三名大學生每輪過關與否互不影響.

(1)求甲、乙、丙三名大學生都不過關的概率;

(2)記為甲、乙、丙三名大學生中過關的人數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、、、是同一平面上不共線的四點,若存在一組正實數(shù)、,使得,則三個角、( )

A. 都是鈍角B. 至少有兩個鈍角

C. 恰有兩個鈍角D. 至多有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人研究中學生的性別與成績、視力、智商、閱讀量這4個變量的關系,隨機抽查了52名中學生,得到統(tǒng)計數(shù)據(jù)如表1至表4,則與性別有關聯(lián)的可能性最大的變量是(
表1

成績
性別

不及格

及格

總計

6

14

20

10

22

32

總計

16

36

52

表2

視力
性別

總計

4

16

20

12

20

32

總計

16

36

52

表3

智商
性別

偏高

正常

總計

8

12

20

8

24

32

總計

16

36

52

表4

閱讀量
性別

豐富

不豐富

總計

14

6

20

2

30

32

總計

16

36

52


A.成績
B.視力
C.智商
D.閱讀量

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點.

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

同步練習冊答案