【題目】關(guān)于函數(shù),下列說法錯(cuò)誤的是

A. 的最小值點(diǎn)

B. 函數(shù)有且只有1個(gè)零點(diǎn)

C. 存在正實(shí)數(shù),使得恒成立

D. 對(duì)任意兩個(gè)不相等的正實(shí)數(shù),若,則

【答案】C

【解析】,(0,2),函數(shù)單調(diào)遞減,(2,+∞)上函數(shù)單調(diào)遞增,

x=2f(x)的極小值點(diǎn),即A正確;

,,

函數(shù)在(0,+∞)上單調(diào)遞減,x→0,y→+∞,

∴函數(shù)有且只有1個(gè)零點(diǎn),即B正確;

,可得,

,,(0,1),函數(shù)單調(diào)遞增,(1,+∞)上函數(shù)單調(diào)遞減,

,

(0,+∞)上函數(shù)單調(diào)遞減,函數(shù)無最小值,

∴不存在正實(shí)數(shù)k,使得f(x)>kx恒成立,即C不正確;

對(duì)任意兩個(gè)正實(shí)數(shù),,(0,2),函數(shù)單調(diào)遞減,(2,+∞)上函數(shù)單調(diào)遞增,,,正確。

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

(2)是否存在實(shí)數(shù),使得函數(shù)上的最小值為1?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于命題:若O是線段AB上一點(diǎn),則有| | +| | = .將它類比到平面的情形是:若O是△ABC內(nèi)一點(diǎn),則有SOBC +SOCA +SOBA = ,將它類比到空間情形應(yīng)該是:若O是四面體ABCD內(nèi)一點(diǎn),則有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n對(duì)任意n∈N*都成立,則實(shí)數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)對(duì)任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f( )??
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:x2=8y.AB是拋物線C的動(dòng)弦,且AB過F(0,2),分別以A,B為切點(diǎn)作軌跡C的切線,設(shè)兩切線交點(diǎn)為Q,證明:AQ⊥BQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且該橢圓經(jīng)過點(diǎn)( , )和點(diǎn) .求
(1)橢圓C的方程;
(2)P,Q,M,N四點(diǎn)在橢圓C上,F(xiàn)1為負(fù)半軸上的焦點(diǎn),直線PQ,MN都過F1 ,求四邊形PMQN的面積最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸,且拋物線上點(diǎn)P(2,m)到焦點(diǎn)的距離為3,斜率為2的直線L與拋物線相交于A,B兩點(diǎn)且|AB|=3 ,求拋物線和直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)),為自然對(duì)數(shù)的底數(shù),若曲線上存在點(diǎn),使得,則的取值范圍是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案