【題目】某幾何體的三視圖如圖所示,當(dāng)xy取得最大值時(shí),該幾何體的體積是________.
【答案】3
【解析】由題意可知,該幾何體為如圖所示的四棱錐PABCD,CD=,AB=y,AC=5,CP=,BP=x,
∴BP2=BC2+CP2,
即x2=25-y2+7,x2+y2=32≥2xy,
則xy≤16,當(dāng)且僅當(dāng)x=y=4時(shí),等號(hào)成立.
此時(shí)該幾何體的體積V==3
點(diǎn)睛:空間幾何體體積問(wèn)題的常見(jiàn)類(lèi)型及解題策略
(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺(tái)體,則可直接利用公式進(jìn)行求解.
(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補(bǔ)形法等方法進(jìn)行求解.
(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在處的切線過(guò)點(diǎn),求的值;
②當(dāng)時(shí),若函數(shù)在上沒(méi)有零點(diǎn),求的取值范圍.
(2)設(shè)函數(shù),且,求證: 當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}(n∈N*),首項(xiàng)a1=3,前n項(xiàng)和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某批次的某種燈泡中,隨機(jī)地抽取個(gè)樣品,并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個(gè)等級(jí),其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.
壽命(天) | 頻數(shù) | 頻率 |
合計(jì) |
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫(xiě)出, 的值.
(Ⅱ)某人從燈泡樣品中隨機(jī)地購(gòu)買(mǎi)了個(gè),求個(gè)燈泡中恰有一個(gè)是優(yōu)等品的概率.
(Ⅲ)某人從這個(gè)批次的燈泡中隨機(jī)地購(gòu)買(mǎi)了個(gè)進(jìn)行使用,若以上述頻率作為概率,用表示此人所購(gòu)買(mǎi)的燈泡中次品的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·成都一診)已知橢圓的右焦點(diǎn)為F,設(shè)直線l:x=5與x軸的交點(diǎn)為E,過(guò)點(diǎn)F且斜率為k的直線l1與橢圓交于A,B兩點(diǎn),M為線段EF的中點(diǎn).
(1)若直線l1的傾斜角為,求△ABM的面積S的值;
(2)過(guò)點(diǎn)B作直線BN⊥l于點(diǎn)N,證明:A,M,N三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·安徽名校階段性測(cè)試)如圖所示,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C,D的點(diǎn),AE=3,圓O的直徑CE=9.
(1)求證:平面ABE⊥平面ADE;
(2)求五面體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD, 為線段的中點(diǎn), 在線段上.
(I)當(dāng)是線段的中點(diǎn)時(shí),求證:PB // 平面ACM;
(II)求證: ;
(III)是否存在點(diǎn),使二面角的大小為60°,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,且方程有兩個(gè)不相等的實(shí)數(shù)根,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com