【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在處的切線過點,求的值;
②當時,若函數(shù)在上沒有零點,求的取值范圍.
(2)設(shè)函數(shù),且,求證: 當時,.
【答案】(1)①;②;(2)證明見解析.
【解析】試題分析:(1)①由題意切線斜率,又 切線方程 ;②當 ,因為.
然后利用分類討論思想對和分情況討論的:;(2)由題意得,從而原命題等價于設(shè) ,然后利用導數(shù)工具證明.
試題解析:
(1)①由題意,得,所以函數(shù)在處的切線斜率,又,所以函數(shù)在處的切線方程,將點代入,得.
②當,可得,因為.
當時,,函數(shù)在上單調(diào)遞增,而,所以只需,解得,從而當時,由,解得
,當時,單調(diào)遞減; 當時,單調(diào)遞增, 所以函數(shù)在上有最小值為,令,解得.綜上所述,.
(2)由題意,,而,等價于
,則,且,
令,則,因為,所以導數(shù)在上單調(diào)遞增,于是,從而函數(shù)在上單調(diào)遞增,即.
科目:高中數(shù)學 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:數(shù)列對一切正整數(shù)均滿足,稱數(shù)列為“凸數(shù)列”,以下關(guān)于“凸數(shù)列”的說法:
①等差數(shù)列一定是凸數(shù)列;
②首項,公比且的等比數(shù)列一定是凸數(shù)列;
③若數(shù)列為凸數(shù)列,則數(shù)列是單調(diào)遞增數(shù)列;
④若數(shù)列為凸數(shù)列,則下標成等差數(shù)列的項構(gòu)成的子數(shù)列也為凸數(shù)列.
其中正確說法的序號是_____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為弘揚民族古典文化,學校舉行古詩詞知識競賽,某輪比賽由節(jié)目主持人隨機從題庫中抽取題目讓選手搶答,回答正確給改選手記正10分,否則記負10分.根據(jù)以往統(tǒng)計,某參賽選手能答對每一個問題的概率為;現(xiàn)記“該選手在回答完個問題后的總得分為”.
(1)求且的概率;
(2)記,求的分布列,并計算數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,假命題是_________ (填序號).
①經(jīng)過定點P(x0,y0)的直線不一定都可以用方程y-y0=k(x-x0)表示;
②經(jīng)過兩個不同的點P1(x1,y1)、P2(x2,y2)的直線都可以用
方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示;
③與兩條坐標軸都相交的直線不一定可以用方程表示;
④經(jīng)過點Q(0,b)的直線都可以表示為y=kx+b.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點為拋物線上一點.
(1)求的方程;
(2)若點在上,過作的兩弦與,若,求證: 直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于空間直角坐標系中的一點,有下列說法:
①點到坐標原點的距離為;
②的中點坐標為;
③點關(guān)于軸對稱的點的坐標為;
④點關(guān)于坐標原點對稱的點的坐標為;
⑤點關(guān)于坐標平面對稱的點的坐標為.
其中正確的個數(shù)是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: ,焦點, 為坐標原點,直線(不垂直軸)過點且與拋物線交于兩點,直線與的斜率之積為.
(1)求拋物線的方程;
(2)若為線段的中點,射線交拋物線于點,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com