在如圖圖形中,小黑點(diǎn)的個(gè)數(shù)構(gòu)成一個(gè)數(shù)列{an}的前3項(xiàng).
(1)a5=
 

(2)數(shù)列{an}的一個(gè)通項(xiàng)公式an=
 
考點(diǎn):歸納推理
專(zhuān)題:推理和證明
分析:觀察圖形特點(diǎn),從中找出規(guī)律,它們的點(diǎn)數(shù)分別是;1,4,7,…,總結(jié)出其規(guī)律,根據(jù)規(guī)律求解.
解答: 解:通過(guò)觀察,得到點(diǎn)的個(gè)數(shù)分別是:
a1=1,
a2=4,
a3=7,

可歸納推理為:
數(shù)列{an}是一個(gè)以1為首項(xiàng),以3為公差的等差數(shù)列,
故an=3n-2,
當(dāng)n=5時(shí),a5=13,
故答案為:13,3n-2
點(diǎn)評(píng):此題主要考查了學(xué)生分析問(wèn)題、觀察總結(jié)規(guī)律的能力.關(guān)鍵是通過(guò)觀察分析得出規(guī)律,數(shù)列{an}一個(gè)首項(xiàng)是1,公差是3的等差數(shù)列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,
BC
=
2
BD
,AD⊥AB,|
AD
|=1,求
AC
AD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(4
4
1
x
+
3x2
n展開(kāi)式中的倒數(shù)第三項(xiàng)的二項(xiàng)式系數(shù)為45,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,直線(xiàn)l的參數(shù)方程為
x=t+2
y=2-t
(參數(shù)t∈R),圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
(參數(shù)θ∈[0,2π)),直線(xiàn)l交圓C于A、B兩點(diǎn),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
4+3i
(1-2i)2
,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<
π
2
)的圖象的一部分,則函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀下題的解題方法:
例題:已知x>0,y>0,且x+y=1,求
1
x
+
2
y
的最小值.
解:
1
x
+
2
y
=(x+y)(
1
x
+
2
y
)=1+
2x
y
+
y
x
+2≥3+2
2x
y
y
x
=3+2
2
,當(dāng)且僅當(dāng)
2x
y
=
y
x
x+y=1.
時(shí),即
x=
2
-1
y=2-
2
.
時(shí),取等號(hào).∴當(dāng)
x=
2
-1
y=2-
2
.
時(shí),
1
x
+
2
y
取最小值,其最小值為3+2
2

類(lèi)比上述解題方法,可求得函數(shù)f(x)=
4
x
+
9
1-2x
,x∈(0,
1
2
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn).根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸方程
y
=0.74x+50
零件數(shù)x(個(gè))1020304050
加工時(shí)間y(min)62mn8189
則m+n的值為( 。
A、137B、129
C、121D、118

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(π-α)=-
12
13
,π<α<
2
,則tanα=( 。
A、
5
12
B、-
5
12
C、
12
5
D、-
12
5

查看答案和解析>>

同步練習(xí)冊(cè)答案