【題目】“楊輝三角”是我國(guó)數(shù)學(xué)史上的一個(gè)偉大成就,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.如圖所示,去除所有為1的項(xiàng),依此構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前46項(xiàng)和為_____.

【答案】

【解析】

根據(jù)“楊輝三角”的特點(diǎn)可知次二項(xiàng)式的二項(xiàng)式系數(shù)對(duì)應(yīng)“楊輝三角”中的第行,從而得到第行去掉所有為的項(xiàng)的各項(xiàng)之和為:;根據(jù)每一行去掉所有為的項(xiàng)的數(shù)字個(gè)數(shù)成等差數(shù)列的特點(diǎn)可求得至第行結(jié)束,數(shù)列共有項(xiàng),則第項(xiàng)為,從而加和可得結(jié)果.

由題意可知,次二項(xiàng)式的二項(xiàng)式系數(shù)對(duì)應(yīng)“楊輝三角”中的第

則“楊輝三角”第行各項(xiàng)之和為:

行去掉所有為的項(xiàng)的各項(xiàng)之和為:

從第行開(kāi)始每一行去掉所有為的項(xiàng)的數(shù)字個(gè)數(shù)為:

則:,即至第行結(jié)束,數(shù)列共有項(xiàng)

項(xiàng)為第行第個(gè)不為的數(shù),即為:

項(xiàng)的和為:

本題正確結(jié)果:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下命題:

①雙曲線的漸近線方程為y=±x;

②命題p:“xR,sinx+≥2”是真命題;

③已知線性回歸方程為=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;

④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;

⑤設(shè),則

則正確命題的序號(hào)為________(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)角度看,可以看成是以為自變量的函數(shù),其定義域是.

1)證明:

2)試?yán)?/span>1的結(jié)論來(lái)證明:當(dāng)為偶數(shù)時(shí),的展開(kāi)式最中間一項(xiàng)的二項(xiàng)式系數(shù)最大;當(dāng)為奇數(shù)時(shí)的展開(kāi)式最中間兩項(xiàng)的二項(xiàng)式系數(shù)相等且最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,圓軸的一個(gè)交點(diǎn)為,圓的圓心為,為等邊三角形.

求拋物線的方程;

設(shè)圓與拋物線交于兩點(diǎn),點(diǎn)為拋物線上介于兩點(diǎn)之間的一點(diǎn),設(shè)拋物線在點(diǎn)處的切線與圓交于兩點(diǎn),在圓上是否存在點(diǎn),使得直線均為拋物線的切線,若存在求出點(diǎn)坐標(biāo)(用表示);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,

(1)設(shè)相交于點(diǎn),,且平面,求實(shí)數(shù)的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù))的圖象為, 關(guān)于點(diǎn)的對(duì)稱的圖象為, 對(duì)應(yīng)的函數(shù)為

(Ⅰ)求函數(shù)的解析式,并確定其定義域;

(Ⅱ)若直線只有一個(gè)交點(diǎn),求的值,并求出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,,,的中點(diǎn).

(1)求和平面所成的角的大。

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有數(shù)學(xué)王子的稱號(hào),他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其名字命名的高斯函數(shù)為:設(shè),用表示不超過(guò)x的最大整數(shù),則稱為高斯函數(shù),例如:,.已知函數(shù),則關(guān)于函數(shù)的敘述中正確的是(

A.是偶函數(shù)B.是奇函數(shù)

C.R上是增函數(shù)D.的值域是

E.的值域是

查看答案和解析>>

同步練習(xí)冊(cè)答案