【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) ;(2) ;(3) .

【解析】試題分析:(1)根據(jù)函數(shù)的奇偶性得到f(﹣x)=﹣f(x),求出a的值即可;

(2)將f(x)變形,解關(guān)于y的不等式,求出f(x)的值域即可;

(3)結(jié)合圖象求出m的范圍即可;

(4)令2x=u,x∈(0,1]u∈(1,2],得到u∈(1,2]時(shí),u2﹣(t+1)u+t﹣2≤0恒成立,求出t的范圍即可.

試題解析:

(1)是定義在上的奇函數(shù),即恒成立,∴.

,解得.

(2)由(1)知,

,即,,由,

,即的值域?yàn)?/span>

(3)原不等式,即為.即.

設(shè),,時(shí), 恒成立,

時(shí), 恒成立,

,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 經(jīng)過點(diǎn)P(2,1),且離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點(diǎn),如果經(jīng)過定點(diǎn)請求出定點(diǎn)的坐標(biāo),如果不經(jīng)過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是矩形, 分別是, 中點(diǎn), ,

)求證: 平面

)求證: 平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點(diǎn)距地面2米,最高點(diǎn)距地面18米,P是摩天輪輪周上一定點(diǎn),從P在最低點(diǎn)時(shí)開始計(jì)時(shí),則14分鐘后P點(diǎn)距地面的高度是米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角和鈍角的終邊分別與單位圓交于點(diǎn),若點(diǎn)的橫坐標(biāo)是,點(diǎn)的縱坐標(biāo)是.

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b∈R+ , m,n∈N* . (Ⅰ)求證:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

I)如果處取得極值,求的值.

II)求函數(shù)的單調(diào)區(qū)間.

III)當(dāng)時(shí),過點(diǎn)存在函數(shù)曲線的切線,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,

(1)證明數(shù)列是等比數(shù)列;

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案