【題目】給出以下命題:

①雙曲線的漸近線方程為y=±x;

②命題p:“xR,sinx+≥2”是真命題;

③已知線性回歸方程為=3+2x,當變量x增加2個單位,其預報值平均增加4個單位;

④設隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;

⑤設,則

則正確命題的序號為________(寫出所有正確命題的序號).

【答案】①③⑤

【解析】分析:①由雙曲線標準方程可得漸近線方程;②根據(jù)均值不等式求最值等號成立的條件可得結果;③根據(jù)線性回歸方程的含義可得結果;④根據(jù)正態(tài)分布的對稱性可得結果;⑤根據(jù)對數(shù)函數(shù)的單調性可得結果.

詳解:①由可以解得雙曲線的漸近線方程為,正確;

②命題不能保證為正,故錯誤;

③根據(jù)線性回歸方程的含義,正確;

,可得,所以,故錯誤;

⑤函數(shù)為增函數(shù),因為,所以,故正確.故答案為①③⑤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(1)討論函數(shù)的單調性;

(2)設,若存在正實數(shù),使得對任意都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寫出下列各隨機試驗的樣本空間:

1)采用抽簽的方式,隨機選擇一名同學,并記錄其性別;

2)采用抽簽的方式,隨機選擇一名同學,觀察其ABO血型;

3)隨機選擇一個有兩個小孩的家庭,觀察兩個孩子的性別;

4)射擊靶3次,觀察各次射擊中靶或脫靶情況;

5)射擊靶3次,觀察中靶的次數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年某地初中畢業(yè)升學體育考試規(guī)定:考生必須參加長跑.擲實心球.1分鐘跳繩三項測試,三項測試各項20分,滿分60分.某學校在初三上學期開始時,為掌握全年級學生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學生進行測試,其中女生54人,得到下面的頻率分布直方圖,計分規(guī)則如表1:

(1)規(guī)定:學生1分鐘跳繩得分20分為優(yōu)秀,在抽取的100名學生中,男生跳繩個數(shù)大等于185個的有28人,根據(jù)已知條件完成表2,并根據(jù)這100名學生測試成績,能否有99%的把握認為學生1分鐘跳繩成績優(yōu)秀與性別有關?

附:參考公式

臨界值表:

(2)根據(jù)往年經驗,該校初三年級學生經過一年的訓練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步.假設今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,全年級恰有2000名學生,所有學生的跳繩個數(shù)X服從正態(tài)分布N(μ,σ2)(用樣本數(shù)據(jù)的平值和方差估計總體的期望和方差,各組數(shù)據(jù)用中點值代替)

①估計正式測試時,1分鐘跳182個以上的人數(shù)(結果四舍五入到整數(shù));

②若在全年級所有學生中任意選取3人,正式測試時1分鐘跳195個以上的人數(shù)為ξ,求ξ占的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51.

(1)當一次訂購量為多少個時,零件的實際出廠單價恰降為51?

(2)設一次訂購量為個,零件的實際出廠單價為.寫出函數(shù)的表達式;

(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元?如果訂購1000個,利潤又是多少元?(工廠售出一個零件的利潤=實際出廠單價-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:

①函數(shù)的單調增區(qū)間是;

②若函數(shù)定義域為且滿足,則它的圖象關于軸對稱;

③函數(shù)的值域為;

④函數(shù)的圖象和直線的公共點個數(shù)是,則的值可能是;

⑤若函數(shù)上有零點,則實數(shù)的取值范圍是.

其中正確的序號是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標方程為

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線軸交于點,與曲線交于點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了了解學生對電子競技的興趣,從該校高二年級的學生中隨機抽取了人進行檢查,已知這人中有名男生對電子競技有興趣,而對電子競技沒興趣的學生人數(shù)與電子競技競技有興趣的女生人數(shù)一樣多,且女生中有的人對電子競技有興趣.

在被抽取的女生中與名高二班的學生,其中有名女生對電子產品競技有興趣,先從這名學生中隨機抽取人,求其中至少有人對電子競技有興趣的概率;

完成下面的列聯(lián)表,并判斷是否有的把握認為“電子競技的興趣與性別有關”.

有興趣

沒興趣

合計

男生

女生

合計

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“楊輝三角”是我國數(shù)學史上的一個偉大成就,是二項式系數(shù)在三角形中的一種幾何排列.如圖所示,去除所有為1的項,依此構成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前46項和為_____.

查看答案和解析>>

同步練習冊答案