【題目】已知、、是函數(shù)的三個(gè)極值點(diǎn),且,有下列四個(gè)關(guān)于函數(shù)的結(jié)論:①;②;③;④恒成立,其中正確的序號(hào)為__________.
【答案】②③④
【解析】解答:
f′(x)=,(x>0),記g(x)=kx,g′(x)=k
當(dāng)k1時(shí),則有x>0g′(x)>k>0g(x)在(0,+∞)上遞增,∴g(x)=0至多有一解,f′(x)=0至多有兩解,不符合題意。
當(dāng)k>1時(shí),由g(x)得單調(diào)性可知g(x)min=g(lnk)=klnk,要使函數(shù)f(x)有三個(gè)極值點(diǎn),即f′(x)=0恰有三個(gè)不等正實(shí)數(shù)根,∴g(x)min=kklnk<0
解得k>e,故①錯(cuò);
又∵g(1)=ek<0,且1是函數(shù)f(x)=lnx+x(k∈R)的一個(gè)極值點(diǎn),∴x1<x2=1<x3,故②正確;
由上可得x1,x3是g(x)=0的兩個(gè)根,即=kx1,=kx3,
∴f(x1)=lnx1+x1=1+lnk,同理f(x3)=1+lnk,故③正確;
由以上推導(dǎo)可得f(x)在(0,x1)遞減,在(x1,1)遞增,在(1,x3)上遞減,在(3,+∞)上遞增。
∴f(x)min=f(x1)=f(x3)=1+lnk>1+lne=2,故④正確。
故答案為:②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 ,且方程 無(wú)實(shí)數(shù)根,下列命題:
(1)方程 一定有實(shí)數(shù)根;
(2)若 ,則不等式 對(duì)一切實(shí)數(shù) 都成立;
(3)若 ,則必存在實(shí)數(shù) ,使 ;
(4)若 ,則不等式 對(duì)一切實(shí)數(shù) 都成立.
其中,正確命題的序號(hào)是________________.(把你認(rèn)為正確的命題的所有序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖出一個(gè)圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿足祖暅原理的兩個(gè)幾何體為( 。
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí), .
(1)直接寫出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左頂點(diǎn)為,右焦點(diǎn)為, 為原點(diǎn), , 是軸上的兩個(gè)動(dòng)點(diǎn),且,直線和分別與橢圓交于, 兩點(diǎn).
(Ⅰ)求的面積的最小值;
(Ⅱ)證明: , , 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;
(2)當(dāng)時(shí),設(shè)函數(shù).若存在區(qū)間,使得函數(shù)在上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一片成熟森林的總面積為 (近期內(nèi)不再種植),計(jì)劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當(dāng)砍伐到面積的一半時(shí),所用時(shí)間是10年,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來(lái)的.
(1)求每年砍伐面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問(wèn):
(1)取到紅色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組共10人,利用假期參加義工活動(dòng),已知參加義工活動(dòng)1次的有2人,2次的有4人,3次的有4人.現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).
(1)設(shè)為事件“選出的2人參加義工活動(dòng)次數(shù)之和為4”,求事件發(fā)生的概率;
(2)設(shè)為選出的2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com