【題目】已知等比數(shù)列{an}的前n項和為Sn,且滿足Sn=2n+1+2p(n∈N*).
(1)求p的值及數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足=(3+p)anbn,求數(shù)列{bn}的前n項和Tn.
【答案】(1)p=-1,an=2n(n∈N*).(2) .
【解析】試題分析:(1)根據(jù)和項與通項關系得當n≥2時,an=Sn-Sn-1=2n.根據(jù)n=1時也滿足,得p的值及數(shù)列{an}的通項公式(2)由已知得bn=,再根據(jù)錯位相減法求數(shù)列{bn}的前n項和Tn.
試題解析:(1)∵Sn=2n+1+2p(n∈N*),
∴a1=S1=4+2p,
當n≥2時,an=Sn-Sn-1=2n.
由于{an}是等比數(shù)列,
∴a1=4+2p=2,則p=-1,
因此an=2n(n∈N*).
(2)由=(3+p)anbn=2anbn,得2n=22nbn,
∴bn=.
Tn=+++…+,①
Tn=++…++,②
①-②得Tn=+++…+-,
∴Tn=1+++…+-
=-=2-,
因此Tn=2--.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的菱形, , 平面, , 是棱上的一個點, , 為的中點.
(1)證明: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,側棱平面, 為等腰直角三角形, ,且, 分別是的中點.
(1)若是的中點,求證: 平面;
(2)若是線段上的任意一點,求直線與平面所成角正弦的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù),其中.
(1)試討論函數(shù)的單調性;
(2)已知當 (其中是自然對數(shù)的底數(shù))時,在上至少存在一點,使成立,求的取值范圍;
(3)求證:當時,對任意,有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l: ,曲線C:
(1)當m=3時,判斷直線l與曲線C的位置關系;
(2)若曲線C上存在到直線l的距離等于的點,求實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為, 直線過點.
(Ⅰ)若點到直線的距離為, 求直線的斜率;
(Ⅱ)設為拋物線上兩點, 且不與軸垂直, 若線段的垂直平分線恰過點, 求證: 線段中點的橫坐標為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的對稱中心為原點O,焦點在x軸上,左,右焦點分別為F1,F2,上頂點和右頂點分別為B,A,線段AB的中點為D,且,△AOB的面積為.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于M,N兩點,若△MF2N的面積為,求以F2為圓心且與直線l相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐A-BCDE中,側棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC=2DE=4,H,I分別是AD,AE的中點.
(Ⅰ)在AB上求作一點F,BC上求作一點G,使得平面FGI∥平面ACD;
(Ⅱ)求平面CHI將四棱錐A-BCDE分成的兩部分的體積比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com