【題目】如圖,三棱柱中,側(cè)棱平面, 為等腰直角三角形, ,且, 分別是的中點.
(1)若是的中點,求證: 平面;
(2)若是線段上的任意一點,求直線與平面所成角正弦的最大值.
【答案】(1)見解析(2) 當(dāng)時, .
【解析】試題分析:
本題考查線面平行的判定和利用空間向量求直線和平面所成的角.(1)先證和,從而得到平面平面,故可得平面.(2)建立空間直角坐標(biāo)系,求得平面的一個法向量為.設(shè)設(shè),且,求得點M的坐標(biāo)后可得.利用線面角的公式得到所求線面角的正弦值,根據(jù)二次函數(shù)的最值求解.
試題解析:
(1)連接, ,
∵分別是的中點,
∴,
∴四邊形是平行四邊形,
所以.
因為分別是的中點,
所以,
又,
所以平面平面,
又平面,
所以平面.
(2)由題意得兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,
則, , , ,
∴, .
設(shè)平面的法向量為,
由,得,
令,得, ,
所以平面的一個法向量為.
設(shè),且,
所以,得, , ,
所以點,
所以.
設(shè)直線與平面所成角為,
則
∴當(dāng)時, .
所以直線與平面所成角正弦的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (m、n為常數(shù),e = 2.718 28…是自然對數(shù)的底數(shù)),曲線y = f (x)在點(1,f (1))處的切線方程是.
(Ⅰ)求m、n的值;
(Ⅱ)求f (x)的最大值;
(Ⅲ)設(shè) (其中為f (x)的導(dǎo)函數(shù)),證明:對任意x > 0,都有.
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為, ,直線交橢圓于, 兩點, 的周長為16, 的周長為12.
(1)求橢圓的標(biāo)準(zhǔn)方程與離心率;
(2)若直線與橢圓交于兩點,且是線段的中點,求直線的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ-2cos θ-6sin θ+=0,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點,點P的坐標(biāo)為(3,3),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是直角梯形, , , , , 平面.
(Ⅰ)上是否存在點使平面,若存在,指出的位置并證明,若不存在,請說明理由;(Ⅱ)證明: ;
(Ⅲ)若,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為, ,直線交橢圓于, 兩點, 的周長為16, 的周長為12.
(1)求橢圓的標(biāo)準(zhǔn)方程與離心率;
(2)若直線與橢圓交于兩點,且是線段的中點,求直線的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項和為Sn,且滿足Sn=2n+1+2p(n∈N*).
(1)求p的值及數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足=(3+p)anbn,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·日照一模)如圖所示,ABCD-A1B1C1D1是長方體,O是B1D1的中點,直線A1C交平面AB1D1于點M,給出下列結(jié)論:
①A、M、O三點共線;②A、M、O、A1不共面;③A、M、C、O共面;④B、B1、O、M共面.
其中正確結(jié)論的序號為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com