【題目】某學(xué)校高三年級(jí)有學(xué)生1000名,經(jīng)調(diào)查研究,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為類同學(xué)),現(xiàn)用分層抽樣方法(按類、類分二層)從該年級(jí)的學(xué)生中共抽查100名同學(xué).
(1)測(cè)得該年級(jí)所抽查的100名同學(xué)身高(單位:厘米) 頻率分布直方圖如圖,按照統(tǒng)計(jì)學(xué)原理,根據(jù)頻率分布直方圖計(jì)算這100名學(xué)生身高數(shù)據(jù)的平均數(shù)和中位數(shù)(單位精確到0.01);
(2)如果以身高達(dá)到作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,得到列聯(lián)表:
體育鍛煉與身高達(dá)標(biāo)列聯(lián)表
身高達(dá)標(biāo) | 身高不達(dá)標(biāo) | 合計(jì) | |
積極參加體育鍛煉 | 60 | ||
不積極參加體育鍛煉 | 10 | ||
合計(jì) | 100 |
①完成上表;
②請(qǐng)問(wèn)有多大的把握認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系?
參考公式:.
參考數(shù)據(jù):
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)174,174.55;(2)①列聯(lián)表見(jiàn)解析;②.
【解析】
(1)根據(jù)頻率分布直方圖的平均數(shù)與中位數(shù)的公式即可求解;
(2)①根據(jù)頻率分布直方圖求出身高達(dá)標(biāo)與不達(dá)標(biāo)的比例,結(jié)合積極參加體育鍛煉和不積極參加體育鍛煉的比例,完成表格;②根據(jù)公式計(jì)算出即可下結(jié)論.
(1)平均數(shù),
前兩組頻率之和為0.25,前三組頻率之和為0.8,所以中位數(shù)在第三組
中位數(shù)為.
(2)根據(jù)頻率分布直方圖可得身高不達(dá)標(biāo)所占頻率為0.25,達(dá)標(biāo)所占頻率為0.75,
所以身高不達(dá)標(biāo)25人,達(dá)標(biāo)75人,
根據(jù)分層抽樣抽取的積極參加體育鍛煉75人,不積極參加體育鍛煉的25人,
所以表格為:
身高達(dá)標(biāo) | 身高不達(dá)標(biāo) | 合計(jì) | |
積極參加體育鍛煉 | 60 | 15 | 75 |
不積極參加體育鍛煉 | 15 | 10 | 25 |
合計(jì) | 75 | 25 | 100 |
假設(shè)體育鍛煉與身高達(dá)標(biāo)沒(méi)有關(guān)系
.
所以有把握認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三年級(jí)有男生105人,女生126人,教師42人,用分層抽樣的方法從中抽取13人進(jìn)行問(wèn)卷調(diào)查.設(shè)其中某項(xiàng)問(wèn)題的選擇只有“同意”,“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調(diào)查人答卷情況的部分信息.
同意 | 不同意 | 合計(jì) | |
教師 | 1 | ||
女生 | 4 | ||
男生 | 2 |
(1)請(qǐng)完成此統(tǒng)計(jì)表;
(2)試估計(jì)高三年級(jí)學(xué)生“同意”的人數(shù);
(3)從被調(diào)查的女生中選取2人進(jìn)行訪談,求選到的兩名學(xué)生中,恰有一人“同意”、一人“不同意”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若=2(an+an+1﹣1),求數(shù)列{ }的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分,(1)小問(wèn)7分,(2)小問(wèn)5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點(diǎn),且|M1M2|=8.
(1)求p的值;
(2)設(shè)A是直線y=上一點(diǎn),直線AM2交拋物線于另一點(diǎn)M3,直線M1M3交直線y=于點(diǎn)B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)在處的切線方程為,函數(shù).
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)(表示,中的最小值),若在上恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)當(dāng)a=2時(shí),求曲線在點(diǎn)處的切線方程;
(II)設(shè)函數(shù),z.x.x.k討論的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓心在原點(diǎn)的圓C與直線l1:相切,動(dòng)直線交圓C于A,B兩點(diǎn),交y軸于點(diǎn)M.
(1)求圓C的方程;
(2)求實(shí)數(shù)k、m的關(guān)系;
(3)若點(diǎn)M關(guān)于O的對(duì)稱點(diǎn)為N,圓N的半徑為.設(shè)D為AB的中點(diǎn),DE,DF與圓N分別相切于點(diǎn)E,F,求的最小值及取最小值時(shí)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了解本市1萬(wàn)名小學(xué)生的普通話水平,在全市范圍內(nèi)進(jìn)行了普通話測(cè)試,測(cè)試后對(duì)每個(gè)小學(xué)生的普通話測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)總體(這1萬(wàn)名小學(xué)生普通話測(cè)試成績(jī))服從正態(tài)分布.
(1)從這1萬(wàn)名小學(xué)生中任意抽取1名小學(xué)生,求這名小學(xué)生的普通話測(cè)試成績(jī)?cè)?/span>內(nèi)的概率;
(2)現(xiàn)在從總體中隨機(jī)抽取12名小學(xué)生的普通話測(cè)試成績(jī),對(duì)應(yīng)的數(shù)據(jù)如下:50,52,56,62,63,68,65,64,72,80,67,90.從這12個(gè)數(shù)據(jù)中隨機(jī)選取4個(gè),記表示大于總體平均分的個(gè)數(shù),求的方差.
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com