如圖,在三棱錐S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA、SB、
SC和底面ABC,所成的角分別為α1、α2、α3,三側(cè)面SBC,SAC,SAB的面積分別為S1,S2,S3,類比三角形中的正弦定理,給出空間情形的一個(gè)猜想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆遼寧大連普通高中高二上學(xué)期期末考試文數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)().
(1)若,求函數(shù)的極值;
(2)若,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湘教版高二數(shù)學(xué)選修2-2基礎(chǔ)達(dá)標(biāo)6.3練習(xí)卷(解析版) 題型:選擇題
用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3,(n∈N+)能被9整除”,要利
用歸納法假設(shè)證n=k+1時(shí)的情況,只需展開( ).
A.(k+3)3 B.(k+2)3
C.(k+1)3 D.(k+1)3+(k+2)3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湘教版高二數(shù)學(xué)選修2-2基礎(chǔ)達(dá)標(biāo)6.2練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3.
(1)判斷f(x)的奇偶性;(2)求證:f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湘教版高二數(shù)學(xué)選修2-2基礎(chǔ)達(dá)標(biāo)6.1練習(xí)卷(解析版) 題型:填空題
定義在(0,+∞)上的函數(shù)f(x),滿足(1)f(9)=2;(2)對(duì)?a,b∈(0,+
∞),有f(ab)=f(a)+f(b),則f=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湘教版高二數(shù)學(xué)選修2-2基礎(chǔ)達(dá)標(biāo)6.1練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)= (x>0),觀察f1(x)=f(x)=,
f2(x)=f[f1(x)]=,
f3(x)=f[f2(x)]=,
f4(x)=f[f3(x)]=,…
根據(jù)以上事實(shí),由歸納推理可得:當(dāng)n∈N+且n≥2時(shí),fn(x)=f[fn-1(x)]=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湘教版高二數(shù)學(xué)選修2-2基礎(chǔ)達(dá)標(biāo)5章末練習(xí)卷(解析版) 題型:解答題
復(fù)數(shù)z=且|z|=4,z對(duì)應(yīng)的點(diǎn)在第一象限,若復(fù)數(shù)0,z,對(duì)應(yīng)的點(diǎn)是正三角形的三個(gè)頂點(diǎn),求實(shí)數(shù)a、b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湘教版高二數(shù)學(xué)選修2-2基礎(chǔ)達(dá)標(biāo)5.4練習(xí)卷(解析版) 題型:解答題
已知復(fù)數(shù)z1滿足(z1-2)(1+i)=1-i,復(fù)數(shù)z2的虛
部為2,且z1z2為實(shí)數(shù),求z2及|z2|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湘教版高二數(shù)學(xué)選修2-2基礎(chǔ)達(dá)標(biāo)4章末練習(xí)卷(解析版) 題型:填空題
過點(diǎn)P(-1,2)且與曲線y=3x2-4x+2在點(diǎn)M(1,1)處的切線平行的直線
方程是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com