【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),且a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于;點(diǎn)A坐標(biāo)(p,q),曲線C方程:y= ,直線l過A點(diǎn),且和曲線C只有一個(gè)交點(diǎn),則直線l的斜率取值范圍為

【答案】9;{ }∪( ,1]
【解析】解:由題意可得:a+b=p,ab=q,
∵p>0,q>0,
可得a>0,b>0,
又a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,
可得 ①或 ②.
解①得:a=4,b=1;解②得:a=1,b=4.
∴p=a+b=5,q=1×4=4,
則p+q=9.
點(diǎn)A坐標(biāo)(5,4),直線的方程設(shè)為y﹣4=k(x﹣5),即kx﹣y﹣5k+4=0
曲線C方程:y= 表示一個(gè)在x軸上方的圓的一半,圓心坐標(biāo)為(0,0),圓的半徑r=1.
由圓心到直線的距離d= =1,可得k= ,
過(﹣1,0)、(5,4)直線的斜率為 = ,過(1,0)、(5,4)直線的斜率為1,
∴直線l的斜率取值范圍為{ }∪( ,1].
所以答案是:9,{ }∪( ,1].
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】靜寧縣是甘肅蘋果栽培第一大縣,中國(guó)著名優(yōu)質(zhì)蘋果基地和重要蘋果出口基地.靜寧縣海拔高、光照充足、晝夜溫差大、環(huán)境無污染,適合種植蘋果.“靜寧蘋果”以色澤鮮艷、質(zhì)細(xì)汁多,酸甜適度,口感脆甜、貨架期長(zhǎng)、極耐儲(chǔ)藏和長(zhǎng)途運(yùn)輸而著名.為檢測(cè)一批靜寧蘋果,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:

分組(重量)

[80,85)

[85,90)

[90,95)

[95,100)

頻數(shù)(個(gè))

5

10

20

15


(1)根據(jù)頻數(shù)分布表計(jì)算蘋果的重量在[90,95)的頻率;
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的蘋果中共抽取4個(gè),其中重量在[80,85)的有幾個(gè)?
(3)在(2)中抽出的4個(gè)蘋果中,任取2個(gè),求重量在[80,85)和[95,100)中各有1個(gè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,設(shè)函數(shù),且的圖象過點(diǎn)和點(diǎn).

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個(gè)單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十三屆全運(yùn)會(huì)將2017年9月在天津舉行,組委會(huì)在2017年1月對(duì)參加接待服務(wù)的10名賓館經(jīng)理進(jìn)行為期半月的培訓(xùn),培訓(xùn)結(jié)束,組織了一次培訓(xùn)結(jié)業(yè)測(cè)試,10人考試成績(jī)?nèi)缦拢M分100分):

75 84 65 90 88 95 78 85 98 82

(Ⅰ)以成績(jī)的十位為莖個(gè)位為葉作出本次結(jié)業(yè)成績(jī)的莖葉圖,并計(jì)算平均成績(jī)與成績(jī)的中位數(shù) ;

(Ⅱ)從本次成績(jī)?cè)?5分以上(含85分)的學(xué)員中任選2人,2人成績(jī)都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,設(shè)PD=x,∠BPC=θ,記函數(shù)f(x)=tanθ,則下列表述正確的是(

A.f(x)是關(guān)于x的增函數(shù)
B.f(x)是關(guān)于x的減函數(shù)
C.f(x)關(guān)于x先遞增后遞減
D.關(guān)于x先遞減后遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,DA⊥AB,

DE1EC,EA2,

∠ADC,∠BEC.

(Ⅰ)sin∠CED的值;

(Ⅱ)BE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)命題:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,且點(diǎn)PAD的中點(diǎn),點(diǎn)QSB的中點(diǎn).

(1)求證:CD⊥平面SAD

(2)求證:PQ∥平面SCD

(3)若SASD,點(diǎn)MBC的中點(diǎn),在棱SC上是否存在點(diǎn)N,使得平面DMN⊥平面ABCD?若存在,請(qǐng)說明其位置,并加以證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,則sinα+cosα的值

查看答案和解析>>

同步練習(xí)冊(cè)答案