【題目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,則sinα+cosα的值 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),且a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于;點(diǎn)A坐標(biāo)(p,q),曲線C方程:y= ,直線l過(guò)A點(diǎn),且和曲線C只有一個(gè)交點(diǎn),則直線l的斜率取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù),).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)在(,是自然對(duì)數(shù)的底數(shù))上有兩個(gè)零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線與直線垂直.
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)求證:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,定圓C的半徑為4,A為圓C上的一個(gè)定點(diǎn),B為圓C上的動(dòng)點(diǎn),若點(diǎn)A,B,C不共線,且 對(duì)任意的t∈(0,+∞)恒成立,則 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin cos +sin2 (ω>0,0<φ< ).其圖象的兩個(gè)相鄰對(duì)稱中心的距離為 ,且過(guò)點(diǎn)( ,1).
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知 = .且f(A)= ,求角C的大�。�
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com