【題目】在斜三棱柱中,,平面底面,點(diǎn)、D分別是線段、BC的中點(diǎn).

(1)求證:;

(2)求證:AD//平面

【答案】(1)見解析;(2)見解析.

【解析】試題分析:

(1)利用題意證得AD⊥平面,結(jié)合線面垂直的定義可得AD⊥CC1

(2)利用題意可得EM // AD,結(jié)合題意和線面平行的判斷法則即可證得結(jié)論.

試題解析:

證明:(1)∵ABAC,點(diǎn)D是線段BC的中點(diǎn),∴AD⊥BC.

又∵平面底面,AD平面ABC,平面底面,

∴AD⊥平面

又CC1平面,∴AD⊥CC1

(2)連結(jié)B1C與BC1交于點(diǎn)E,連結(jié)EM,DE.

在斜三棱柱中,四邊形BCC1B1是平行四邊∴點(diǎn)E為B1C的中點(diǎn).

∵點(diǎn)D是BC的中點(diǎn),∴DE//B1B,DEB1B. ……10分

又∵點(diǎn)M是平行四邊形BCC1B1邊AA1的中點(diǎn),

∴AM//B1B,AMB1B.∴AM// DE,AMDE.

∴四邊形ADEM是平行四邊形.

∴EM // AD.

又EM平面MBC1,AD平面MBC1

∴AD //平面MBC1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若f(﹣4)=f(0),f(﹣2)=﹣1.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)的定義域、值域、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知向量m = (cosA,cosB),n = (b + 2c,a),且m⊥n.

(1)求角A的大;

(2)若a = 4,b + c = 8,求AC邊上的高h(yuǎn)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所設(shè)計(jì)了一款智能機(jī)器人,為了檢驗(yàn)設(shè)計(jì)方案中機(jī)器人動(dòng)作完成情況,現(xiàn)委托某工廠生產(chǎn)個(gè)機(jī)器人模型,并對(duì)生產(chǎn)的機(jī)器人進(jìn)行編號(hào): ,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為的機(jī)器人樣本,試驗(yàn)小組對(duì)個(gè)機(jī)器人樣本的動(dòng)作個(gè)數(shù)進(jìn)行分組,頻率分布直方圖及頻率分布表中的部分?jǐn)?shù)據(jù)如圖所示,請(qǐng)據(jù)此回答如下問題:

分組

機(jī)器人數(shù)

頻率

0.08

10

10

6

(1)補(bǔ)全頻率分布表,畫出頻率分布直方圖;

(2)若隨機(jī)抽的第一個(gè)號(hào)碼為,這個(gè)機(jī)器人分別放在三個(gè)房間,從房間,從房間,從房間,求房間被抽中的人數(shù)是多少?

(3)從動(dòng)作個(gè)數(shù)不低于的機(jī)器人中隨機(jī)選取個(gè)機(jī)器人,該個(gè)機(jī)器人中動(dòng)作個(gè)數(shù)不低于的機(jī)器人記為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若隨機(jī)變量X的分布列為P(X=i)= (i=1,2,3,4),則P(X>2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中, 是橢圓的左、右焦點(diǎn),過作直線交橢圓于兩點(diǎn),若的周長(zhǎng)為8,離心率為.

(1)求橢圓方程;

(2)若弦的斜率不為0,且它的中垂線與軸交于,求的縱坐標(biāo)的范圍;

(3)是否在軸上存在點(diǎn),使得軸平分?若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系中,曲線的參數(shù)方程為: 為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;

(2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某測(cè)試團(tuán)隊(duì)為了研究“飲酒”對(duì)“駕車安全”的影響,隨機(jī)選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測(cè)試,測(cè)試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子停下所需要的距離),無酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表

停車距離(米)

頻數(shù)

26

8

2

/tr>

平均每毫升血液酒精含量 毫克

10

30

50

70

90

平均停車距離

30

50

60

70

90

已知表 數(shù)據(jù)的中位數(shù)估計(jì)值為,回答以下問題.

(Ⅰ)求的值,并估計(jì)駕駛員無酒狀態(tài)下停車距離的平均數(shù);

(Ⅱ)根據(jù)最小二乘法,由表的數(shù)據(jù)計(jì)算關(guān)于的回歸方程;

(Ⅲ)該測(cè)試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于(Ⅰ)中無酒狀態(tài)下的停車距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請(qǐng)根據(jù)(Ⅱ)中的回歸方程,預(yù)測(cè)當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?

(附:回歸方程中,

查看答案和解析>>

同步練習(xí)冊(cè)答案