【題目】已知函數(shù)f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=(3a+1)x﹣(a2+a)x2 , 當(dāng)x>1時(shí),f(x)<g(x)恒成立,求a的取值范圍.
【答案】
(1)解:∵f(x)=lnx﹣a2x2+ax,其定義域?yàn)椋?,+∞),
∴f′(x)= ﹣2a2x+a= = .
①當(dāng)a=0時(shí),f′(x)= >0,
∴f(x)在區(qū)間(0,+∞)上為增函數(shù),不合題意.
②當(dāng)a>0時(shí),f′(x)<0(x>0)等價(jià)于(2ax+1)(ax﹣1)>0(x>0),即x> .
此時(shí)f(x)的單調(diào)遞減區(qū)間為( ,+∞).
依題意,得 解之,得a≥1.
③當(dāng)a<0時(shí),f′(x)<0(x>0)等價(jià)于(2ax+1)(ax﹣1)>0(x>0),即x>﹣ .
此時(shí)f(x)的單調(diào)遞減區(qū)間為(﹣ ,+∞).
依題意,得 解之,得a≤﹣ .
綜上所述,實(shí)數(shù)a的取值范圍是(﹣∞,﹣ ]∪[1,+∞)
(2)解:∵g(x)=(3a+1)x﹣(a2+a)x2,
∴f(x)﹣g(x)=lnx﹣(2a+1)x+ax2<0,
即lnx﹣x<2ax﹣ax2,在(1,+∞)恒成立,
設(shè)h(x)=lnx﹣x,
則h′(x)= ﹣1<0恒成立,
∴h(x)在(1,+∞)為減函數(shù),
∴h(x)<h(1)=﹣1,
∴ax2﹣2ax﹣1<0,在(1,+∞)上恒成立,
設(shè)φ(x)=ax2﹣2ax﹣1
當(dāng)a=0時(shí),﹣1<0,符合題意,
當(dāng)a>0時(shí),顯然不滿足題意,
當(dāng)a<0,由于對(duì)稱軸x=1,則φ(1)<0,即a﹣2a﹣1<0,解得﹣1<a<0,
綜上所述,a的取值范圍為(﹣1,0]
【解析】(1)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出a的取值范圍,(2)當(dāng)x>1時(shí),f(x)<g(x)恒成立,轉(zhuǎn)化為lnx﹣x<2ax﹣ax2 , 在(1,+∞)恒成立,構(gòu)造函數(shù)h(x)=lnx﹣x,利用導(dǎo)數(shù)求出函數(shù)最值,得到ax2﹣2ax﹣1<0,在(1,+∞)上恒成立,再分類討論,根據(jù)二次函數(shù)的性質(zhì)即可求出a的取值范圍.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級(jí)共有學(xué)生名,為了解學(xué)生某次月考的情況,抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),繪制出如下尚未完成的頻率分布表:
分組 | 頻數(shù) | 頻率 |
(1)補(bǔ)充完整題中的頻率分布表;
(2)若成績(jī)?cè)?/span>為優(yōu)秀,估計(jì)該校高三年級(jí)學(xué)生在這次月考中,成績(jī)優(yōu)秀的學(xué)生約為多少人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面凸四邊形中(凸四邊形指沒有角度數(shù)大于的四邊形),.
(1)若,,求;
(2)已知,記四邊形的面積為.
① 求的最大值;
② 若對(duì)于常數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.(直接寫結(jié)果,不需要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+mx+n(m,n∈R)滿足f(0)=f(1),且方程x=f(x)有兩個(gè)相等的實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0,3]時(shí),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購(gòu)得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬元.
若學(xué)生宿舍建筑為x層樓時(shí),該樓房綜合費(fèi)用為y萬元,綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和,寫出的表達(dá)式;
為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,為中點(diǎn),連接,則異面直線和所成角的余弦值為_____.
【答案】
【解析】
連接CD1,CM,由四邊形A1BCD1為平行四邊形得A1B∥CD1,即∠CD1M為異面直線A1B和D1M所成角,再由已知求△CD1M的三邊長(zhǎng),由余弦定理求解即可.
如圖,
連接,由,可得四邊形為平行四邊形,
則,∴為異面直線和所成角,
由正方體的棱長(zhǎng)為1,為中點(diǎn),
得,.
在中,由余弦定理可得,.
∴異面直線和所成角的余弦值為.
故答案為:.
【點(diǎn)睛】
本題考查異面直線所成角的求法,異面直線所成的角常用方法有:將異面直線平移到同一平面中去,達(dá)到立體幾何平面化的目的;或者建立坐標(biāo)系,通過求直線的方向向量得到直線夾角或其補(bǔ)角.
【題型】填空題
【結(jié)束】
16
【題目】在中,角所對(duì)的邊分別是,是的中點(diǎn),,,面積的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為,半徑為1,該紙片上的等邊三角形的中心為.、、為圓上的點(diǎn),,,分別是以,,為底邊的等腰三角形.沿虛線剪開后,分別以,,為折痕折起,,,使得、、重合,得到三棱錐.當(dāng)的邊長(zhǎng)變化時(shí),所得三棱錐體積的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某公司舉行的年終慶典活動(dòng)中,主持人利用隨機(jī)抽獎(jiǎng)軟件進(jìn)行抽獎(jiǎng):由電腦隨機(jī)生成一張如圖所示的33表格,其中1格設(shè)獎(jiǎng)300元,4格各設(shè)獎(jiǎng)200元,其余4格各設(shè)獎(jiǎng)100元,點(diǎn)擊某一格即顯示相應(yīng)金額.某人在一張表中隨機(jī)不重復(fù)地點(diǎn)擊3格,記中獎(jiǎng)的總金額為X元.
(1)求概率;
(2)求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com