【題目】北京某附屬中學為了改善學生的住宿條件,決定在學校附近修建學生宿舍,學?倓辙k公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高萬元,已知建筑第5層樓房時,每平方米建筑費用為萬元.
若學生宿舍建筑為x層樓時,該樓房綜合費用為y萬元,綜合費用是建筑費用與購地費用之和,寫出的表達式;
為了使該樓房每平方米的平均綜合費用最低,學校應把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?
【答案】(1);(2)學校應把樓層建成層,此時平均綜合費用為每平方米萬元
【解析】
由已知求出第層樓房每平方米建筑費用為萬元,得到第層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高萬元,然后利用等差數(shù)列前項和求建筑層樓時的綜合費用;
設(shè)樓房每平方米的平均綜合費用為,則,然后利用基本不等式求最值.
解:由建筑第5層樓房時,每平方米建筑費用為萬元,
且樓房每升高一層,整層樓每平方米建筑費用提高萬元,
可得建筑第1層樓房每平方米建筑費用為:萬元.
建筑第1層樓房建筑費用為:萬元.
樓房每升高一層,整層樓建筑費用提高:萬元.
建筑第x層樓時,該樓房綜合費用為:.
;
設(shè)該樓房每平方米的平均綜合費用為,
則:,
當且僅當,即時,上式等號成立.
學校應把樓層建成10層,此時平均綜合費用為每平方米萬元.
科目:高中數(shù)學 來源: 題型:
【題目】下表中提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸標準煤)的四組對應數(shù)據(jù).
6 | 8 | 10 | 12 | |
2.5 | 3 | 4 | 4.5 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為45噸標準煤,試根據(jù)(1)中的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|2x+1|,a∈R.
(1)當a=1時,求不等式f(x)≤1的解集;
(2)設(shè)關(guān)于x的不等式f(x)≤-2x+1的解集為P,且 P,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=(3a+1)x﹣(a2+a)x2 , 當x>1時,f(x)<g(x)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(1,2),過點P(5,﹣2)的直線與拋物線y2=4x相交于B,C兩點,則△ABC是( )
A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為與,且乙投球3次均未命中的概率為,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】德國數(shù)學家科拉茨1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到1. 對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:如果對正整數(shù)n(首項)按照上述規(guī)則施行變換后的第8項為1(注:l可以多次出現(xiàn)),則n的所有不同值的個數(shù)為
A. 4 B. 6 C. 8 D. 32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,﹣1)是拋物線C:x2=2py(p>0)準線上的一點,點F是拋物線C的焦點,點P在拋物線C上且滿足|PF|=m|PA|,當m取最小值時,點P恰好在以原點為中心,F(xiàn)為焦點的雙曲線上,則此雙曲線的離心率為( )
A.
B.
C. +1
D. +1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com