【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(
A.[ , ]
B.[ , ]
C.[ ]
D.[ , ]

【答案】A
【解析】解:將函數(shù)f(x)=2cos2x的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象, 得g(x)=2cos2(x﹣ )=2cos(2x﹣ ),
,得
當(dāng)k=0時(shí),函數(shù)的增區(qū)間為[ ],當(dāng)k=1時(shí),函數(shù)的增區(qū)間為[ ].
要使函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,
,解得a∈[ , ].
故選:A.
由函數(shù)的圖象平移求得函數(shù)g(x)的解析式,進(jìn)一步求出函數(shù)(x)的單調(diào)增區(qū)間,結(jié)合函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增列關(guān)于a的不等式組求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在研究學(xué)習(xí)中,收集到某制藥廠今年5個(gè)月甲膠囊生產(chǎn)產(chǎn)量(單位:萬(wàn)盒)的數(shù)據(jù)如下表所示:

(月份)

1

2

3

4

5

(萬(wàn)盒)

5

5

6

6

8

線(xiàn)性相關(guān),線(xiàn)性回歸方程為,則以下為真命題的是( )

A. 每增加1個(gè)單位長(zhǎng)度,則一定增加0.7個(gè)單位長(zhǎng)度

B. 每增加1個(gè)單位長(zhǎng)度,則必減少0.7個(gè)單位長(zhǎng)度

C. 當(dāng)時(shí),的預(yù)測(cè)值為8.1萬(wàn)盒

D. 線(xiàn)性回歸直線(xiàn)經(jīng)過(guò)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知遞減等差數(shù)列{an}滿(mǎn)足:a1=2,a2a3=40. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(Ⅱ)若遞減等比數(shù)列{bn}滿(mǎn)足:b2=a2 , b4=a4 , 求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-平面ABC,DE,F,G分別為AC,的中點(diǎn),AB=BC=,AC==2.

求證AC平面BEF;

求二面角B-CD-C1的余弦值;

證明直線(xiàn)FG與平面BCD相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC, ABBC, BDDC,點(diǎn)EBC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE, AC, DE,得到如圖所示的空間幾何體.

  

(1)求證:AB⊥平面ADC;

(2)若AD=1,AB,求點(diǎn)B到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=(3a+1)x﹣(a2+a)x2 , 當(dāng)x>1時(shí),f(x)<g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某學(xué)校組織的一次籃球總投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,如果前兩次得分之和超過(guò)3分即停止投籃,否則投第3次.某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2 . 該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃的訓(xùn)練結(jié)束后所得的總分,其分布列為

ξ

0

2

3

4

5

P

0.03

P1

P2

P3

P4


(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇在B處投籃得分超過(guò)3分與選擇上述方式投籃得分超過(guò)3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}滿(mǎn)足an+1+an=92n﹣1 , n∈N* . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=nan , 數(shù)列{bn}的前n項(xiàng)和為Sn , 若不等式Sn>kan﹣1對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某公司舉行的年終慶典活動(dòng)中,主持人利用隨機(jī)抽獎(jiǎng)軟件進(jìn)行抽獎(jiǎng):由電腦隨機(jī)生成一張如圖所示的33表格,其中1格設(shè)獎(jiǎng)300元,4格各設(shè)獎(jiǎng)200元,其余4格各設(shè)獎(jiǎng)100元,點(diǎn)擊某一格即顯示相應(yīng)金額.某人在一張表中隨機(jī)不重復(fù)地點(diǎn)擊3格,記中獎(jiǎng)的總金額為X元.

1)求概率;

2)求的概率分布及數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案