在平面直角坐標(biāo)系xOy中,雙曲線C的中心在原點(diǎn),焦點(diǎn)在y軸上,一條漸近線方程為x-
3
y=0
,則雙曲線C的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知條件推導(dǎo)出雙曲線方程為y2-
x2
3
,λ>0,由此能求出雙曲線的離心率.
解答: 解:∵雙曲線C的中心在原點(diǎn),焦點(diǎn)在y軸上,
一條漸近線方程為x-
3
y=0
,
∴雙曲線方程為y2-
x2
3
,λ>0,
∴雙曲線的標(biāo)準(zhǔn)方程為
y2
λ
-
x2
=1
,
∴a=
λ
,c=
=2
λ
,
∴e=
c
a
=2.
故答案為:2.
點(diǎn)評(píng):本題考查雙曲線的離心率的求法,是中檔題,解題時(shí)要熟練掌握雙曲線的簡(jiǎn)單性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,
OA
,
OB
為平面的一組基向量,
OC
=3
OA
,
OD
=
3
2
OB
,AD與BC交與點(diǎn)P.
(1)求
OP
關(guān)于
OA
,
OB
的分解式;
(2)設(shè)∠BOA=60°,|
OA
|=|
OB
|=7,求|
OP
|;
(3)過P任作直線l交直線OA,OB于M,N兩點(diǎn),設(shè)
OM
=m
OA
ON
=n
OB
,(m,n≠0)求m,n的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從棱長(zhǎng)為1的正方體的8個(gè)頂點(diǎn)中任取不同2點(diǎn),設(shè)隨機(jī)變量ξ是這兩點(diǎn)間的距離.
(1)求概率P(ξ=
2
)
;
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y-2≤0
4x-3y≤0
x≥-3
,則z=|x+4y|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將1,2,3,…,9這9個(gè)正整數(shù)分別寫在三張卡片上,要求每一張卡片上的任意兩數(shù)之差都不在這張卡片上.現(xiàn)在第一張卡片上已經(jīng)寫有1和5,第二張卡片上寫有2,第三張卡片上寫有3,則6應(yīng)該寫在第
 
張卡片上;第三張卡片上的所有數(shù)組成的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,5]上隨機(jī)地取一個(gè)數(shù)x,若x滿足|x|≤m的概率為
5
7
,m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x1,y1)|y=f(x)},若?(x1,y1)∈M,?(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“!奔o出下列四個(gè)集合:
①M(fèi)={(x,y)|y=x+
1
x
};      
②M={(x,y)|y=cosx};
③M={(x,y)|y=ln(x+2)}      
④M={(x,y)|y=3x}.
其中是“!奔木幪(hào)是
 
.(寫出所有是“!奔木幪(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m<1”是“方程x2+2x+m=0有實(shí)數(shù)解的(  )條件.
A、充分必要
B、充分不必要
C、必要不充分
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
4x
3x2+3
(x∈(0,2)),g(x)=
1
2
x2-lnx-a

(1)求f(x)的值域;
(2)若?x∈[1,2]使得g(x)=0,求a的取值范圍;
(3)對(duì)?x1∈(0,2),總存在x2∈[1,2]使得f(x1)=g(x2),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案