【題目】設(shè)橢圓的右焦點(diǎn)為,以原點(diǎn)為圓心,短半軸長(zhǎng)為半徑的圓恰好經(jīng)過橢圓的兩焦點(diǎn),且該圓截直線所得的弦長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過定點(diǎn)的直線交橢圓于兩點(diǎn)、,橢圓上的點(diǎn)滿足,求直線的方程.
【答案】(1);(2).
【解析】
(1)由題意可知,,再由圓截直線所得的弦長(zhǎng)為,得,可求出,從而求出的值,可得到橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)的直線為,與橢圓方程聯(lián)立成方程組,消元后得,先使判別式大于零,求出的取值范圍,再利用根與系數(shù)的關(guān)系得到,然后結(jié)合將點(diǎn)的坐標(biāo)表示出來代入橢圓方程中可出的值,從而可得直線的方程.
(1)以原點(diǎn)為圓心,短半軸長(zhǎng)為半徑的圓的方程為.
∵ 圓過橢圓的兩焦點(diǎn), ∴,
∵ 圓截直線所得的弦長(zhǎng)為.
∴ ,解得,
∴ .
∴ 橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè)過點(diǎn)的直線方程為.
,兩點(diǎn)的坐標(biāo)分別為,,
聯(lián)立方程,得,,
∴ ,
∵ ,∴點(diǎn),
∵ 點(diǎn)在橢圓上,∴有,
即,
∴ ,
即,解得,符合,
直線方程為.
(2)方法二:由題意知直線的斜率存在,
設(shè)過定點(diǎn)的直線為,
,,
則直線與軸交于點(diǎn),
因?yàn)?/span>,所以,
將直線與橢圓聯(lián)立并化簡(jiǎn)可得,
,
則,
解得,
所以,,
所以,
因?yàn)辄c(diǎn)在橢圓上,
所以滿足橢圓方程,
將,代入得,
,
化簡(jiǎn)得,
直線方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】牛頓迭代法(Newtonsmethod)又稱牛頓-拉夫遜方法(Newton-Raphsonmethod),是牛頓在17世紀(jì)提出的一種近似求方程根的方法.如圖,設(shè)是的根,選取作為初始近似值,過點(diǎn)作曲線的切線,與軸的交點(diǎn)的橫坐標(biāo),稱是的一次近似值,過點(diǎn)作曲線的切線,則該切線與軸的交點(diǎn)的橫坐標(biāo)為,稱是的二次近似值.重復(fù)以上過程,得到的近似值序列.請(qǐng)你寫出的次近似值與的次近似值的關(guān)系式______,若,取作為的初始近似值,試求的一個(gè)根的三次近似值______(請(qǐng)用分?jǐn)?shù)做答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)從甲、乙兩個(gè)班中各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的眾數(shù)是83,乙班學(xué)生成績(jī)的平均數(shù)是86,則的值為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖中(1)(2)(3)(4)為四個(gè)平面圖形,表中給出了各平面圖形中的頂點(diǎn)數(shù)邊數(shù)以及區(qū)域數(shù).
平面圖形 | 頂點(diǎn)數(shù) | 邊數(shù) | 區(qū)域數(shù) |
1 | 3 | 3 | 2 |
2 | 8 | 12 | 6 |
3 | 6 | 9 | 5 |
4 | 10 | 15 | 7 |
現(xiàn)已知某個(gè)平面圖形有1009個(gè)頂點(diǎn),且圍成了1006個(gè)區(qū)域,試根據(jù)以上關(guān)系確定這個(gè)平面圖形的邊數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為
A. 2B. 3C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】體溫是人體健康狀況的直接反應(yīng),一般認(rèn)為成年人腋下溫度T(單位:)平均在之間即為正常體溫,超過即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險(xiǎn)):.某位患者因患肺炎發(fā)熱,于12日至26日住院治療.醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個(gè)療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱.住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測(cè)量腋下體溫記錄如下:
抗生素使用情況 | 沒有使用 | 使用“抗生素A”療 | 使用“抗生素B”治療 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
體溫() | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情況 | 使用“抗生素C”治療 | 沒有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
體溫() | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(I)請(qǐng)你計(jì)算住院期間該患者體溫不低于的各天體溫平均值;
(II)在19日—23日期間,醫(yī)生會(huì)隨機(jī)選取3天在測(cè)量體溫的同時(shí)為該患者進(jìn)行某一特殊項(xiàng)目“a項(xiàng)目”的檢查,記X為高熱體溫下做“a項(xiàng)目”檢查的天數(shù),試求X的分布列與數(shù)學(xué)期望;
(III)抗生素治療一般在服藥后2-8個(gè)小時(shí)就能出現(xiàn)血液濃度的高峰,開始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請(qǐng)依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)和智能手機(jī)的普及與快速發(fā)展,許多可以解答各學(xué)科問題的搜題軟件走紅.有教育工作者認(rèn)為:用搜題軟件搜索答案可以起到拓展思路的作用,但是對(duì)多數(shù)學(xué)生來講,容易產(chǎn)生依賴心理,對(duì)學(xué)習(xí)能力造成損害.為了了解搜題軟件在學(xué)生中的使用情況,某校對(duì)200名本校的高二學(xué)生在一周內(nèi)用搜題軟件搜題的次數(shù)進(jìn)行了問卷調(diào)查,調(diào)查結(jié)果如下表:
一周內(nèi)用搜題軟件搜題的次數(shù)區(qū)間 | ||||||
人數(shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將一周內(nèi)用搜題軟件搜題的次數(shù)在的學(xué)生評(píng)價(jià)為“有搜題軟件依賴癥”,在的學(xué)生評(píng)價(jià)為“有搜題軟件過度依賴癥”.
(1)若在這200名高二學(xué)生中男生有90人,且男生中有30人“有搜題軟件過度依賴癥”,請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并通過計(jì)算,判斷是否有的把握認(rèn)為該校高二學(xué)生是否“有搜題軟件過度依賴癥”與性別有關(guān);
有搜題軟件依賴癥 | 有搜題軟件過度依賴癥 | 合計(jì) | |
男 | 30 | 90 | |
女 | |||
合計(jì) |
(2)在(1)中“有搜題軟件過度依賴癥”的學(xué)生中,按男女學(xué)生比例用分層抽樣方法抽出5人,進(jìn)行手機(jī)軟件搜題問題交流,再從這5人中隨機(jī)選出3人作重點(diǎn)發(fā)言,求選出的這3人中至少有1名女生的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com