【題目】牛頓迭代法(Newtonsmethod)又稱牛頓-拉夫遜方法(Newton-Raphsonmethod),是牛頓在17世紀(jì)提出的一種近似求方程根的方法.如圖,設(shè)是的根,選取作為初始近似值,過點(diǎn)作曲線的切線,與軸的交點(diǎn)的橫坐標(biāo),稱是的一次近似值,過點(diǎn)作曲線的切線,則該切線與軸的交點(diǎn)的橫坐標(biāo)為,稱是的二次近似值.重復(fù)以上過程,得到的近似值序列.請你寫出的次近似值與的次近似值的關(guān)系式______,若,取作為的初始近似值,試求的一個(gè)根的三次近似值______(請用分?jǐn)?shù)做答).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方形ABCD中,AB=1,∠ABD=60°,現(xiàn)將長方形ABCD沿著對角線BD折起,使平面ABD⊥平面BCD,則折后幾何圖形的外接球表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,與都是邊長為2的等邊三角形,為等腰直角三角形,,.
(1)證明:;
(2)若為的中點(diǎn),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,以短軸長為直徑的圓過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且與圓沒有公共點(diǎn),設(shè)為橢圓上一點(diǎn),滿足(為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900
(1)求證:PC⊥BC
(2)求點(diǎn)A到平面PBC的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了對某種商品進(jìn)行合理定價(jià),需了解該商品的月銷售量(單位:萬件)與月銷售單價(jià)(單位:元/件)之間的關(guān)系,對近個(gè)月的月銷售量和月銷售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測數(shù)據(jù)如表所示:
月銷售單價(jià)(元/件) | ||||||
月銷售量(萬件) |
(1)若用線性回歸模型擬合與之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,和,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識,判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說明理由;
(2)若用模型擬合與之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為和,請用說明哪個(gè)回歸模型的擬合效果更好;
(3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當(dāng)月銷售單價(jià)為何值時(shí),商品的月銷售額預(yù)報(bào)值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,以原點(diǎn)為圓心,短半軸長為半徑的圓恰好經(jīng)過橢圓的兩焦點(diǎn),且該圓截直線所得的弦長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過定點(diǎn)的直線交橢圓于兩點(diǎn)、,橢圓上的點(diǎn)滿足,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com