【題目】隨著網(wǎng)絡(luò)和智能手機(jī)的普及與快速發(fā)展,許多可以解答各學(xué)科問題的搜題軟件走紅.有教育工作者認(rèn)為:用搜題軟件搜索答案可以起到拓展思路的作用,但是對多數(shù)學(xué)生來講,容易產(chǎn)生依賴心理,對學(xué)習(xí)能力造成損害.為了了解搜題軟件在學(xué)生中的使用情況,某校對200名本校的高二學(xué)生在一周內(nèi)用搜題軟件搜題的次數(shù)進(jìn)行了問卷調(diào)查,調(diào)查結(jié)果如下表:

一周內(nèi)用搜題軟件搜題的次數(shù)區(qū)間

人數(shù)

20

36

44

50

40

10

將一周內(nèi)用搜題軟件搜題的次數(shù)在的學(xué)生評價(jià)為“有搜題軟件依賴癥”,在的學(xué)生評價(jià)為“有搜題軟件過度依賴癥”.

1)若在這200名高二學(xué)生中男生有90人,且男生中有30人“有搜題軟件過度依賴癥”,請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并通過計(jì)算,判斷是否有的把握認(rèn)為該校高二學(xué)生是否“有搜題軟件過度依賴癥”與性別有關(guān);

有搜題軟件依賴癥

有搜題軟件過度依賴癥

合計(jì)

30

90

合計(jì)

2)在(1)中“有搜題軟件過度依賴癥”的學(xué)生中,按男女學(xué)生比例用分層抽樣方法抽出5人,進(jìn)行手機(jī)軟件搜題問題交流,再從這5人中隨機(jī)選出3人作重點(diǎn)發(fā)言,求選出的這3人中至少有1名女生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)填表見解析;有;(2.

【解析】

1)根據(jù)題中所給的數(shù)據(jù),分別計(jì)算有搜題軟件依賴癥和過度依賴癥的人,依次計(jì)算列聯(lián)表中的數(shù)據(jù),并計(jì)算比較大小;

2)先計(jì)算抽取5人中,男生和女生分別是多少人,再用編號(hào)列舉的方法,計(jì)算古典概型的概率.

1)列聯(lián)表如下:

有搜題軟件依賴癥

有搜題軟件過度依賴癥

合計(jì)

60

30

90

90

20

110

合計(jì)

150

50

200

∴有的把握認(rèn)為該校高二學(xué)生是否“有搜題軟件過度依賴癥”與性別有關(guān).

2)由(1)可知,在“有搜題軟件過度依賴癥”的50名學(xué)牛中,男、女生人數(shù)比為,

∴用分層抽樣的方法抽出5人,男生有人,女生有.

3名男生記為,,2名女生記為,,從中隨機(jī)選出3人作重點(diǎn)發(fā)言,一共有,,,,,,,,10種不同的選法,

選出的這3人中至少有1名女生的不同選法有,,,,,9種不同的選法,

∴所求的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了對某種商品進(jìn)行合理定價(jià),需了解該商品的月銷售量(單位:萬件)與月銷售單價(jià)(單位:元/件)之間的關(guān)系,對近個(gè)月的月銷售量和月銷售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測數(shù)據(jù)如表所示:

月銷售單價(jià)(元/件)

月銷售量(萬件)

1)若用線性回歸模型擬合之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說明理由;

2)若用模型擬合之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為,請用說明哪個(gè)回歸模型的擬合效果更好;

3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當(dāng)月銷售單價(jià)為何值時(shí),商品的月銷售額預(yù)報(bào)值最大?(精確到

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),記函數(shù)的導(dǎo)函數(shù)的兩個(gè)零點(diǎn)是),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,以原點(diǎn)為圓心,短半軸長為半徑的圓恰好經(jīng)過橢圓的兩焦點(diǎn),且該圓截直線所得的弦長為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過定點(diǎn)的直線交橢圓于兩點(diǎn)、,橢圓上的點(diǎn)滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________

查看答案和解析>>

同步練習(xí)冊答案