已知橢圓的離心率為,左右焦點(diǎn)分別為,且.
(1)求橢圓C的方程;
(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求的面積.

(1);(2)

解析試題分析:(1)因?yàn)橐髾E圓的方程,必須求出兩個(gè)關(guān)于橢圓的三個(gè)基本量的等式,依題意可得,離心率,焦距的長即可求出相應(yīng)的的大小,從而可求出橢圓的方程.
(2)要求三角形的面積通過求出弦長和焦點(diǎn)到直線的距離,從而根據(jù)三角形的面積可得三角形的面積.弦長公式的計(jì)算需要具備解方程的能力,應(yīng)用韋達(dá)定理,弦長公式,化簡等式的能力;運(yùn)用點(diǎn)到直線的距離公式計(jì)算三角形的高.
試題解析:(1)由已知 ,所以 .
因?yàn)闄E圓的離心率為,所以.
所以 . 所以 ,
故橢圓C的方程為.
(2)若直線的方程為,則,不符合題意.
設(shè)直線的方程為,
   消去y得
顯然成立,設(shè),
 

.
由已知 ,解得.當(dāng) ,直線的方程為,即,
點(diǎn)到直線的距離.所以的面
.
當(dāng),的面積也等于.
綜上,的面積等于.
考點(diǎn):1.直線與圓的位置關(guān)系.2.待定系數(shù)求橢圓的方程.3.解方程的能力.4.三角形的面積公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn),短軸長為2,一條準(zhǔn)線方程為lx=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)M是直線l上的動(dòng)點(diǎn),過點(diǎn)FOM的垂線與以OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的一條漸近線方程是,它的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,點(diǎn)是雙曲線右支上相異兩點(diǎn),且滿足為線段的中點(diǎn),直線的斜率為
(1)求雙曲線的方程;
(2)用表示點(diǎn)的坐標(biāo);
(3)若,的中垂線交軸于點(diǎn),直線軸于點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,動(dòng)點(diǎn)滿足:點(diǎn)到定點(diǎn)與到軸的距離之差為.記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點(diǎn)的直線交曲線、兩點(diǎn),過點(diǎn)和原點(diǎn)的直線交直線于點(diǎn),求證:直線平行于軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)狱c(diǎn)P到點(diǎn)A(-2,0)與點(diǎn)B(2,0)的斜率之積為-,點(diǎn)P的軌跡為曲線C.

(1)求曲線C的方程;
(2)若點(diǎn)Q為曲線C上的一點(diǎn),直線AQBQ與直線x=4分別交于M,N兩點(diǎn),直線BM與橢圓的交點(diǎn)為D.求證,AD,N三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,左、右兩個(gè)焦點(diǎn)分別為、,上頂點(diǎn),為正三角形且周長為6,直線與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)一個(gè)焦點(diǎn)為,且離心率的橢圓上下兩頂點(diǎn)分別為,直線交橢圓兩點(diǎn),直線與直線交于點(diǎn).
(1)求橢圓的方程;
(2)求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)過點(diǎn)M(0,2)作直線與直線垂直,試判斷直線與橢圓的位置關(guān)系5
(3)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是拋物線上的兩個(gè)點(diǎn),點(diǎn)的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點(diǎn)在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點(diǎn),且,過兩點(diǎn)分別作W的切線,記兩切線的交點(diǎn)為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案