已知雙曲線的一條漸近線方程是,它的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,點(diǎn)是雙曲線右支上相異兩點(diǎn),且滿足為線段的中點(diǎn),直線的斜率為
(1)求雙曲線的方程;
(2)用表示點(diǎn)的坐標(biāo);
(3)若,的中垂線交軸于點(diǎn),直線交軸于點(diǎn),求的面積的取值范圍.
(1);(2);(3)
解析試題分析:(1)求雙曲線的標(biāo)準(zhǔn)方程只需找到兩個(gè)關(guān)于的兩個(gè)等式,通過解方程即可得到的值,從而得到雙曲線方程.
(2)由直線AB的方程與雙曲線方程聯(lián)立,消去y可得關(guān)于x的一個(gè)一元二次方程,判別式必須滿足大于零,再由韋達(dá)定理可表示出點(diǎn)D的坐標(biāo),又根據(jù)即可用k表示點(diǎn)D的縱坐標(biāo).從而可求出點(diǎn)D的坐標(biāo).
(3)的中垂線交軸于點(diǎn),直線交軸于點(diǎn)求的面積.通過直線AB可以求出點(diǎn)N的坐標(biāo),又由線段AB的中垂線及中點(diǎn)D的坐標(biāo),可以寫出中垂線的方程,再令y=0,即可求出點(diǎn)M.以MN長(zhǎng)為底邊,高為點(diǎn)D的縱坐標(biāo),即可求出面積的表達(dá)式.再用最值的求法可得結(jié)論.
試題解析:(1)
雙曲線的方程為;
(2)方法一:
設(shè)直線的方程為代入方程得
當(dāng)時(shí)記兩個(gè)實(shí)數(shù)根為
則
∴的方程為把代入得
下求的取值范圍:法一:由得即
而所以化簡(jiǎn)得
法二:在中令得
即所以
再結(jié)合 得 ;
方法二:兩式相減得
(3)由(2)可知方程中令得
設(shè)點(diǎn)的坐標(biāo)為由得
∴
考點(diǎn):1.雙曲線的性質(zhì).2.直線與雙曲線的位置關(guān)系.3.三角形的面積的求法.4.最值的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A,B,C是橢圓W:+y2=1上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
己知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),點(diǎn)A(2,0)在橢圓C上,過F點(diǎn)的直線與橢圓C交于不同兩點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)直線斜率為1,求線段的長(zhǎng);
(3)設(shè)線段的垂直平分線交軸于點(diǎn)P(0,y0),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)、為雙曲線:的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且.圓的方程是.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
(3)過圓上任意一點(diǎn)作圓的切線交雙曲線于、兩點(diǎn),中點(diǎn)為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C1:=1,橢圓C2以C1的短軸為長(zhǎng)軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)直線l與橢圓C2相交于不同的兩點(diǎn)A、B,已知A點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,y0)在線段AB的垂直平分線上,且=4,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知F1,F2分別為橢圓C1:=1(a>b>0)的上下焦點(diǎn),其中F1是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=.
(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點(diǎn),若橢圓上一點(diǎn)P滿足,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,左右焦點(diǎn)分別為,且.
(1)求橢圓C的方程;
(2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂在坐標(biāo)原點(diǎn),焦點(diǎn)到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點(diǎn),設(shè)線段的中垂線與軸交于點(diǎn) ,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com