已知橢圓的左、右焦點分別為,離心率為,P是橢圓上一點,且面積的最大值等于2.
(1)求橢圓的方程;
(2)過點M(0,2)作直線與直線垂直,試判斷直線與橢圓的位置關系5
(3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標;若不存在,說明理由。

(1)  ;(2)相切;(3) 存在,.

解析試題分析:(1)通過橢圓性質列出的方程,其中離心率,分析圖形知道當點P在短軸端點時,面積取得最大值,所以,橢圓中,從而建立關于的方程,解出;即得到橢圓的標準方程(2)列出過定點直線的方程,其與直線垂直,求出其斜率,聯(lián)立橢圓方程,得出,寫出關系;(3)對于存在性的問題,要先假設存在,先設存在這樣的點,結合圖形知道要先討論,當時,明顯切線不垂直,當時,先設切線,與橢圓方程聯(lián)立,利用,得出關于斜率的方程,利用兩根之積公式,解出點坐標.即值.此題為較難題型,分類討論時要全面.
試題解析:(1)因為點在橢圓上,所以
因此當時,面積最大,且最大值為
又離心率為
由于,解得
所求橢圓方程為.
(2)由(1)知,
直線的斜率等于,直線的方程
消去,整理得
直線與橢圓相切.
(3)假設直線上存在點滿足題意,設,顯然當時,從點所引的兩條切線不垂直.
時,設過點向橢圓所引的切線的斜率為,則的方程為
消去,整理得:

所以,      *
設兩條切線的斜率分別為,顯然,是方程的兩根,故:
解得:,點坐標為
因此,直線上存在兩點滿足題意.
考點:1.橢圓的性質與標準方程;2.直線垂直的判斷;3.存在性問題的求解;4.直線與橢圓的位置關系的判斷.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

己知橢圓C:(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,過F點的直線與橢圓C交于不同兩點.
(1)求橢圓C的方程;
(2)設直線斜率為1,求線段的長;
(3)設線段的垂直平分線交軸于點P(0,y0),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,左右焦點分別為,且.
(1)求橢圓C的方程;
(2)過點的直線與橢圓相交于兩點,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,若橢圓的右頂點為圓的圓心,離心率為
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點,與圓分別交于兩點,點在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,橢圓的的一個頂點和兩個焦點構成的三角形的面積為4,
(1)求橢圓C的方程;
(2)已知直線與橢圓C交于A, B兩點,若點M(, 0),求證為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂在坐標原點,焦點到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點,設線段的中垂線與軸交于點 ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知線段MN的兩個端點M、N分別在軸、軸上滑動,且,點P在線段MN上,滿足,記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關系;
(2)當時,設A、B是曲線W與軸、軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,右焦點為,右頂點在圓上.
(Ⅰ)求橢圓和圓的方程;
(Ⅱ)已知過點的直線與橢圓交于另一點,與圓交于另一點.請判斷是否存在斜率不為0的直線,使點恰好為線段的中點,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案