【題目】近年來(lái)隨著素質(zhì)教育的不斷推進(jìn),高考改革趨勢(shì)明顯.國(guó)家教育部先后出臺(tái)了有關(guān)高考的《學(xué)業(yè)水平考試》、《綜合素質(zhì)評(píng)價(jià)》、《加分項(xiàng)目瘦身與自主招生》三個(gè)重磅文件,引起社會(huì)極大關(guān)注,有人說(shuō):男孩苦,女孩樂(lè)!為了了解某地區(qū)學(xué)生和包括老師,家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考改革的看法,某媒體在該地區(qū)選擇了人,,就是否“贊同改革”進(jìn)行調(diào)查,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:

贊同

不贊同

無(wú)所謂

在校學(xué)生

社會(huì)人士

已知在全體樣本中隨機(jī)抽取人,抽到持“不贊同”態(tài)度的人的概率為.

(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問(wèn)卷訪(fǎng)談,文應(yīng)該在持“無(wú)所謂”態(tài)度的人中抽取多少人?

(2)在持“不贊同”態(tài)度的人中,用分層抽樣方法抽取人,若從人中任抽人進(jìn)一步深入調(diào)查,為更多了解學(xué)生的意愿,要求在校學(xué)生人數(shù)不少于社會(huì)人士人士,求恰好抽到兩名在校學(xué)生的概率.

【答案】(1)72人;(2).

【解析】試題分析:(1)先由抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05,由已知條件求出x,再求出持“無(wú)所謂”態(tài)度的人數(shù),由此利用抽樣比能求出應(yīng)在“無(wú)所謂”態(tài)度抽取的人數(shù).
(2)在所抽取的人中,在校學(xué)生為4人,社會(huì)人士為2人,列舉在校學(xué)生人數(shù)不少于社會(huì)人士人數(shù)”包含基本事件,利用古典概型求解即可.

試題解析:

(1)∵抽到持“不贊同”態(tài)度的人的概率為

,解得

∴持“無(wú)所謂”態(tài)度的人數(shù)共有

∴應(yīng)在“無(wú)所謂”態(tài)度的人中抽取

(2)由(1)知持“不贊同”態(tài)度的一共有

∴在所抽取的人中,在校學(xué)生為人,

社會(huì)人士為

記抽取的名在校學(xué)生依次為,名社會(huì)人士依次為

“在校學(xué)生人數(shù)不少于社會(huì)人士人數(shù)”包含基本事件為:,

,,,

,,,,

,共個(gè),

記“恰好抽到兩名學(xué)生”為事件,事件包含個(gè)基本事件,

∴所求事件的概率為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)存在兩個(gè)極值點(diǎn)且滿(mǎn)足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,墻上有一壁畫(huà),最高點(diǎn)離地面4米,最低點(diǎn)離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫(huà),設(shè)觀賞視角

(1)若問(wèn):觀察者離墻多遠(yuǎn)時(shí),視角最大?

(2)若當(dāng)變化時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直角三角形中,的中點(diǎn),是線(xiàn)段上一個(gè)動(dòng)點(diǎn),且,如圖所示,沿翻折至,使得平面平面

(1)當(dāng)時(shí),證明:平面;

(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)(其中).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司為推廣線(xiàn)下分店,計(jì)劃在區(qū)開(kāi)設(shè)分店,為了確定在該區(qū)設(shè)分店的個(gè)數(shù),該公司對(duì)該市開(kāi)設(shè)分店的其他區(qū)的數(shù)據(jù)做了初步處理后得到下列表格.記表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù),表示這個(gè)分店的年收入之和.

(1)該公司已經(jīng)過(guò)初步判斷,可用線(xiàn)性回歸模型擬合的關(guān)系,求關(guān)于的線(xiàn)性回歸方程;

(2)假設(shè)該公司在區(qū)獲得的總年利潤(rùn)(單位:百萬(wàn)元)與,之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線(xiàn)性回歸方程,估算該公司在區(qū)開(kāi)設(shè)多少個(gè)分店時(shí),才能使區(qū)平均每個(gè)分店的年利潤(rùn)最大?

參考公式:回歸直線(xiàn)方程為,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求的方程;

(2)若動(dòng)點(diǎn)在直線(xiàn)上,過(guò)作直線(xiàn)交橢圓兩點(diǎn),使得,再過(guò)作直線(xiàn),證明:直線(xiàn)恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓: 上的任一點(diǎn)到焦點(diǎn)的距離最大值為3,離心率為 ,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若為曲線(xiàn)上兩點(diǎn), 為坐標(biāo)原點(diǎn),直線(xiàn) 的斜率分別為,,求直線(xiàn)被圓截得弦長(zhǎng)的最大值及此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓的左右頂點(diǎn),點(diǎn)是橢圓的上頂點(diǎn),若該橢圓的焦距為,直線(xiàn),的斜率之積為.

(1)求橢圓的方程;

(2)是否存在過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),使得以為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出直線(xiàn)的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案