【題目】如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角
(1)若問:觀察者離墻多遠(yuǎn)時,視角最大?
(2)若當(dāng)變化時,求的取值范圍.
【答案】(1)當(dāng)觀察者離墻米時,視角最大;(2)
【解析】試題分析:(1)利用兩角差的正切公式建立函數(shù)關(guān)系式,根據(jù)基本不等式求最值,最后根據(jù)正切函數(shù)單調(diào)性確定最大時取法,(2)利用兩角差的正切公式建立等量關(guān)系式,進(jìn)行參變分離得,再根據(jù)a的范圍確定范圍,最后解不等式得的取值范圍.
試題解析:(1)當(dāng)時,過作的垂線,垂足為,
則,且,
由已知觀察者離墻米,且,
則,
所以, ,
當(dāng)且僅當(dāng)時,取“”.
又因?yàn)?/span>在上單調(diào)增,所以,當(dāng)觀察者離墻米時,視角最大.
(2)由題意得,,又,
所以,
所以,
當(dāng)時,,所以,
即,解得或,
又因?yàn)?/span>,所以,
所以的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,,是半徑為的球面上的點(diǎn),,,點(diǎn)在上的射影為,則三棱錐體積的最大值是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一200名學(xué)生的期中考試語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻數(shù)分布直方圖如下:
(1)計(jì)算這次考試的數(shù)學(xué)平均分,并比較語文和數(shù)學(xué)哪科的平均分較高(假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的);
(2)如果成績大于85分的學(xué)生為優(yōu)秀,這200名學(xué)生中本次考試語文、數(shù)學(xué)優(yōu)秀的人數(shù)大約各多少人?
(3)如果語文和數(shù)學(xué)兩科都優(yōu)秀的共有4人,從(2)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望.
(附參考公式)若,則,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)討論函數(shù)零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.(為自然對數(shù)的底數(shù))
(1)設(shè);
①若函數(shù)在處的切線過點(diǎn),求的值;
②當(dāng)時,若函數(shù)在上沒有零點(diǎn),求的取值范圍.
(2)設(shè)函數(shù),且,求證:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了歲到歲之間的位網(wǎng)上購物者的年齡分布情況,并將所得數(shù)據(jù)按照,,,,分成組,繪制成頻率分布直方圖(如圖).
(1)求頻率分布直方圖中實(shí)數(shù)的值及這位網(wǎng)上購物者中年齡在內(nèi)的人數(shù);
(2)現(xiàn)采用分層抽樣的方法從參與調(diào)查的位網(wǎng)上購物者中隨機(jī)抽取人,再從這人中任選人,設(shè)這人中年齡在內(nèi)的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知橢圓()的左焦點(diǎn)為,離心率為,過點(diǎn)且垂直于長軸的弦長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)分別是橢圓的左、右頂點(diǎn),若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn)、.
①求證:;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著素質(zhì)教育的不斷推進(jìn),高考改革趨勢明顯.國家教育部先后出臺了有關(guān)高考的《學(xué)業(yè)水平考試》、《綜合素質(zhì)評價》、《加分項(xiàng)目瘦身與自主招生》三個重磅文件,引起社會極大關(guān)注,有人說:男孩苦,女孩樂!為了了解某地區(qū)學(xué)生和包括老師,家長在內(nèi)的社會人士對高考改革的看法,某媒體在該地區(qū)選擇了人,,就是否“贊同改革”進(jìn)行調(diào)查,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
贊同 | 不贊同 | 無所謂 | |
在校學(xué)生 | |||
社會人士 |
已知在全體樣本中隨機(jī)抽取人,抽到持“不贊同”態(tài)度的人的概率為.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問卷訪談,文應(yīng)該在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“不贊同”態(tài)度的人中,用分層抽樣方法抽取人,若從人中任抽人進(jìn)一步深入調(diào)查,為更多了解學(xué)生的意愿,要求在校學(xué)生人數(shù)不少于社會人士人士,求恰好抽到兩名在校學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,兩點(diǎn)的極坐標(biāo)分別為.
(1)求圓的普通方程和直線的直角坐標(biāo)方程;
(2)點(diǎn)是圓上任一點(diǎn),求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com