【題目】設(shè)函數(shù)(其中).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).
【答案】(1)答案見解析;(2)在定義域上只有唯一的零點(diǎn).
【解析】試題分析:(1)由題意,求得,分類討論,即可求得函數(shù)的單調(diào)區(qū)間;
(2)由(1)值,再分和兩種討論,利用函數(shù)的圖象,進(jìn)而確定函數(shù)的零點(diǎn)個(gè)數(shù).
試題解析:
(1)函數(shù)的定義域?yàn)?/span>,,
①當(dāng)時(shí),令,解得,所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,
②當(dāng)時(shí),令,解得或,
所以在和上單調(diào)遞增,在上單調(diào)遞減,
③當(dāng)時(shí),,在上單調(diào)遞增,
④當(dāng)時(shí),令,解得或,所以在和上單調(diào)遞增,在上單調(diào)遞減;
(2),
①當(dāng)時(shí),,又在上單調(diào)遞增,所以函數(shù)在上只有一個(gè)零點(diǎn),
在區(qū)間中,因?yàn)?/span>,
取,于是,
又在上單調(diào)遞減,故在上也只有一個(gè)零點(diǎn),
所以,函數(shù)在定義域上有兩個(gè)零點(diǎn);
②當(dāng)時(shí),在單調(diào)遞增區(qū)間內(nèi),只有.
而在區(qū)間內(nèi),即在此區(qū)間內(nèi)無零點(diǎn).
所以,函數(shù)在定義域上只有唯一的零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為100的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯(cuò)誤的是( )
A. 是否傾向選擇生育二胎與戶籍有關(guān)
B. 是否傾向選擇生育二胎與性別無關(guān)
C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同
D. 傾向選擇生育二的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.(為自然對數(shù)的底數(shù))
(1)設(shè);
①若函數(shù)在處的切線過點(diǎn),求的值;
②當(dāng)時(shí),若函數(shù)在上沒有零點(diǎn),求的取值范圍.
(2)設(shè)函數(shù),且,求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知橢圓()的左焦點(diǎn)為,離心率為,過點(diǎn)且垂直于長軸的弦長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)分別是橢圓的左、右頂點(diǎn),若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn)、.
①求證:;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,原點(diǎn)為,橢圓的動弦過焦點(diǎn)且不垂直于坐標(biāo)軸,弦的中點(diǎn)為,過且垂直于線段的直線交直線于點(diǎn).
(1)證明:三點(diǎn)共線;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著素質(zhì)教育的不斷推進(jìn),高考改革趨勢明顯.國家教育部先后出臺了有關(guān)高考的《學(xué)業(yè)水平考試》、《綜合素質(zhì)評價(jià)》、《加分項(xiàng)目瘦身與自主招生》三個(gè)重磅文件,引起社會極大關(guān)注,有人說:男孩苦,女孩樂!為了了解某地區(qū)學(xué)生和包括老師,家長在內(nèi)的社會人士對高考改革的看法,某媒體在該地區(qū)選擇了人,,就是否“贊同改革”進(jìn)行調(diào)查,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
贊同 | 不贊同 | 無所謂 | |
在校學(xué)生 | |||
社會人士 |
已知在全體樣本中隨機(jī)抽取人,抽到持“不贊同”態(tài)度的人的概率為.
(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問卷訪談,文應(yīng)該在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“不贊同”態(tài)度的人中,用分層抽樣方法抽取人,若從人中任抽人進(jìn)一步深入調(diào)查,為更多了解學(xué)生的意愿,要求在校學(xué)生人數(shù)不少于社會人士人士,求恰好抽到兩名在校學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,點(diǎn)在棱上,且.
(Ⅰ)求證:;
(Ⅱ)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)函數(shù)的圖象與的圖象無公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)是否存在實(shí)數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出整數(shù)的最大值;若不存在,請說理由.
(參考數(shù)據(jù):,,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018山西太原市高三3月模擬】已知橢圓的左、右頂點(diǎn)分別為,右焦點(diǎn)為,點(diǎn)在橢圓上.
(I)求橢圓方程;
(II)若直線與橢圓交于兩點(diǎn),已知直線與相交于點(diǎn),證明:點(diǎn)在定直線上,并求出定直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com