【題目】如圖,在直三棱柱中,
,
為
的中點.
(1)求證:平面
;
(2)求證:平面平面
.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn,且Sn=λn2﹣16n+m.
(1)當λ=2時,求通項公式an;
(2)設(shè){an}的各項為正,當m=15時,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有9個連在一起的停車位,現(xiàn)有5輛不同型號的轎車需停放,若要求剩余的4個車位中恰有3個連在起,則不同的停放方法有________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在極坐系中,點繞極點
順時針旋轉(zhuǎn)角
得到點
.以
為原點,極軸為
軸非負半軸,并取相同的單位長度建立平面直角坐標系,曲線
:
繞
逆時針旋轉(zhuǎn)
得到曲線
.
(1)求曲線的極坐標方程和曲線
的直角坐標方程;
(2)點的極坐標為
,直線
過點
且與曲線
交于
,
兩點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙紐線最早于1694年被瑞士數(shù)學家雅各布·伯努利用來描述他所發(fā)現(xiàn)的曲線.在平面直角坐標系中,把到定點
,
距離之積等于
(
)的點的軌跡稱為雙紐線C.已知點
是雙紐線C上一點,下列說法中正確的有( )
①雙紐線C關(guān)于原點O中心對稱; ②;
③雙紐線C上滿足的點P有兩個; ④
的最大值為
.
A.①②B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,
、
、
兩兩垂直,
,
,
,
為線段
上一點(端點除外).
(1)若異面直線、
所成角的余弦值為
,求
的長;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為原點,極軸為
軸非負半軸建立平面直角坐標系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)在(1)中,設(shè)曲線經(jīng)過伸縮變換
得到曲線
,設(shè)曲線
上任意一點為
,當點
到直線
的距離取最大值時,求此時點
的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓:
(
)的離心率為
,并以拋物線
:
的焦點
為上焦點.直線
:
(
)交拋物線
于
,
兩點,分別以
,
為切點作拋物線
的切線,兩切線相交于點
,又點
恰好在橢圓
上.
(1)求橢圓的方程;
(2)求的最大值;
(3)求證:點恒在
的外接圓內(nèi).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點的直線l:
與拋物線E:
(
)交于B,C兩點,且A為線段
的中點.
(1)求拋物線E的方程;
(2)已知直線:
與直線l平行,過直線
上任意一點P作拋物線E的兩條切線,切點分別為M,N,是否存在這樣的實數(shù)m,使得直線
恒過定點A?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com