【題目】給定數(shù)列,若滿足(且),對于任意,都有,則稱數(shù)列為指數(shù)數(shù)列.
(1)已知數(shù)列、的通項(xiàng)公式分別為,,試判斷、是不是指數(shù)數(shù)列(需說明理由);
(2)若數(shù)列滿足:,,,證明:是指數(shù)數(shù)列;
(3)若是指數(shù)數(shù)列,,證明:數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.
【答案】(1)不是指數(shù)數(shù)列,是指數(shù)數(shù)列,見解析;(2)見解析;(3)見解析
【解析】
(1)對數(shù)列、,驗(yàn)證與,與是否相等,由此判斷出、是不是指數(shù)數(shù)列.
(2)利用累加法求得數(shù)列的通項(xiàng)公式,然后驗(yàn)證,由此證得是指數(shù)數(shù)列.
(3)首先根據(jù)指數(shù)數(shù)列的定義求得數(shù)列的通項(xiàng)公式,利用反證法,證得數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.
(1)對于數(shù)列,,,,因?yàn)?/span>,所以不是指數(shù)數(shù)列.
對于數(shù)列,對任意,因?yàn)?/span>,所以是指數(shù)數(shù)列.
(2)由題意,,所以數(shù)列是首項(xiàng)為,公比為2的等比數(shù)列.所以.
所以,,
即的通項(xiàng)公式為.所以,故是指數(shù)數(shù)列.
(3)因?yàn)閿?shù)列是指數(shù)數(shù)列,故對于任意的,有,令,則,
所以是首項(xiàng)為,公比為的等比數(shù)列,所以,.
假設(shè)數(shù)列中存在三項(xiàng),,構(gòu)成等差數(shù)列,不妨設(shè),
則由,得,所以,
當(dāng)為偶數(shù)時,是偶數(shù),而是偶數(shù),是奇數(shù),
故不能成立;
當(dāng)為奇數(shù)時,是偶數(shù),而是奇數(shù),是偶數(shù),
故也不能成立.
所以,對任意,不能成立,
即數(shù)列的任意三項(xiàng)都不成構(gòu)成等差數(shù)列.
(另證:因?yàn)閷θ我?/span>,一定是偶數(shù),而與為一奇一偶,故與也為一奇一偶,故等式右邊一定是奇數(shù),等式不能成立.)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】青島二中高一高二高三三個年級數(shù)學(xué)MT的學(xué)生人數(shù)分別為240人,240人,120人,現(xiàn)采用分層抽樣的方法從中抽取5名同學(xué)參加團(tuán)隊(duì)內(nèi)部舉辦的趣味數(shù)學(xué)比賽,再從5位同學(xué)中選出2名一等獎記A=“兩名一等獎來自同一年級”,則事件A的概率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是__________________.
①命題“若x2-3x+2=0,則x=1”的逆否命題為:若x≠1,則x2-3x+2≠0
②x=1是x2-3x+2=0的充分不必要條件
③若p∧q為假命題,則p,q均為假命題
④對于命題p:x∈R,使得x2+x+1<0,則非p:x∈R, 均有x2+x+1≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的是( )
A.一條直線與兩個平行平面中的一個平行,則必與另一個平面平行
B.空間中兩條直線要么平行,要么相交
C.空間中任意的三個點(diǎn)都能唯一確定一個平面
D.對于空間中任意兩條直線,總存在平面與這兩條直線都平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下圖給出的2000年至2016年我國實(shí)際利用外資情況,以下結(jié)論正確的是
A. 2000年以來我國實(shí)際利用外資規(guī)模與年份負(fù)相關(guān)
B. 2010年以來我國實(shí)際利用外資規(guī)模逐年增加
C. 2008年我國實(shí)際利用外資同比增速最大
D. 2010年以來我國實(shí)際利用外資同比增速最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點(diǎn)在x軸上的橢圓C:經(jīng)過點(diǎn),橢圓C的離心率為.,是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M為的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過M且平行于OP的直線l交橢圓C于A,B兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機(jī)問卷50名使用者,然后根據(jù)這50名的問卷評分?jǐn)?shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值;
(2)求這50名問卷評分?jǐn)?shù)據(jù)的中位數(shù);
(3)從評分在[40,60)的問卷者中,隨機(jī)抽取2人,求此2人評分都在[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為,,焦距為6.
(1)求橢圓的方程.
(2)過橢圓左頂點(diǎn)的兩條斜率之積為的直線分別與橢圓交于點(diǎn).試問直線是否過某定點(diǎn)?若過,求出該點(diǎn)的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com