某市教育局為了了解高三學生體育達標情況,對全市高三學生進行了體能測試,經分析,全市學生體能測試成績X服從正態(tài)分布N(80,σ2)(滿分為100分),已知P(X<75)=0.3,P(X≥95)=0.1,現(xiàn)從該市高三學生隨機抽取三位同學.
(1)求抽到的三位同學該次體能測試成績在區(qū)間[80,85),[85,95),[95,100]各有一位同學的概率;
(2)記抽到的三位同學該次體能測試成績在區(qū)間[75,85]的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望Eξ.
考點:離散型隨機變量及其分布列,離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:(1)由已知得P(80≤X<85)=1-P(X≤75)=0.2,P(85≤x<95)=0.3-0.1=0.2,由此能求出抽到的三位同學該次體能測試成績在區(qū)間[80,85),[85,95),[95,100]各有一位同學的概率.
(2)P(75≤X≤85)=1-2P(X<75)=0.4,從而ξ服從二項分布B(3,0.4),由此能求出隨機變量ξ的分布列和數(shù)學期望Eξ.
解答: 解:(1)P(80≤X<85)=1-P(X≤75)=0.2,
P(85≤x<95)=0.3-0.1=0.2,
所以所求概率P=
A
3
3
×0.2×0.2×0.1
=0.024.
(2)P(75≤X≤85)=1-2P(X<75)=0.4,
所以ξ服從二項分布B(3,0.4),
P(ξ=0)=0.63=0.216,
P(ξ=1)=3×0.4×0.62=0.432,
P(ξ=2)=3×0.42×0.6=0.288,
P(ξ=3)=0.43=0.064,
所以隨機變量ξ的分布列是
ξ0123
P0.2160.4320.2880.064
Eξ=3×0.4=1.2.(人).
點評:本題考查概率的求法,考查離散型隨機就是的分布列和數(shù)學期望的合理運用,是中檔題,解題時要認真審題,注意二項分布的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,當xy最大時,該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

云浮市質監(jiān)部門為迎接2015年春節(jié)到來,從市場中隨機抽取100個不同生產廠家的某種產品檢驗質量,按重量(單位;g)分組(重量大的質量高),得到的頻率分布表如圖所示:
組號重量分組頻數(shù)頻率
第1組[160,165)50.050
第2組[165,170)0.350
第3組[170,175)30
第4組[175,180)200.200
第5組[180,185]100.100
合計1001.00
(1)請先求出頻率分布表中①、②位置相應數(shù)據,再完成下列頻率分布直方圖;
(2)由于該產品要求質量高,決定在重量大的第3,4,5組中用分層抽樣抽取6個產品再次檢驗,求第3,4,5組每組各抽取多少產品進入第二次檢驗?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直三棱柱ABC-A1B1C1中,∠BAC=90°,側面BCC1B1的面積為2,則直三棱柱ABC-A1B1C1外接球表面積的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為迎接2015年在蘭州舉行的“中國蘭州國際馬拉松比賽”,某單位在推介晚會中進行嘉賓現(xiàn)在抽獎活動,抽獎盒中裝有大小相同的6個小球,分別印有“蘭州馬拉松”和“綠色金城行”兩種標志,搖勻后,規(guī)定參加者每次從盒中同時抽取兩個小球(登記后放回并搖勻),若抽到的兩個球都印有“蘭州馬拉松”標志即可獲獎.并停止取球;否則繼續(xù),但每位嘉賓最多抽取3次,已知從盒中抽取兩個小球不都是“綠色金城行”標志的概率為
4
5

(Ⅰ)求盒中印有“蘭州馬拉松”標志的小球的個數(shù);
(Ⅱ)若用η表示這位嘉賓抽取的次數(shù),求η的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,計算該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四面體ABCD的棱長為a.點E,F(xiàn)分別是棱AC,BD的中點,則
AE
AF
的值是( 。
A、a2
B、
1
2
a2
C、
1
4
a2
D、
3
4
a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
9
+
y2
4
=1(x≥0,y≥0)與直線x-y-5=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的通項公式為an=n2+kn+2,有
an+1an,n≥5
an+1an,1≤n≤4
成立,則k的取值范圍為
 

查看答案和解析>>

同步練習冊答案