18.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a9構(gòu)成等比數(shù)列{bn}的前3項(xiàng),則$\frac{a_9}{a_3}$=3;又若d=2,則數(shù)列{bn}的前n項(xiàng)的和Sn=3n-1.

分析 由等比數(shù)列的性質(zhì)和等差數(shù)列的通項(xiàng)公式可得d=a1,再由等比數(shù)列的定義和等差數(shù)列的通項(xiàng)公式,以及等比數(shù)列的求和公式計(jì)算可得.

解答 解:由題意可得a32=a1a9,
即為(a1+2d)2=a1(a1+8d),
即4d2=4a1d,(d≠0),
可得d=a1,$\frac{{a}_{9}}{{a}_{3}}$=$\frac{d+8d}{d+2d}$=3;
若d=2,則a1=2,a3=2+4=6,
即有等比數(shù)列{bn}的公比為q=3,
和Sn=$\frac{2(1-{3}^{n})}{1-3}$=3n-1.
故答案為:3,3n-1.

點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式的運(yùn)用,等比數(shù)列的求和公式的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)在(-∞,0)∪(0,+∞)上既是偶函數(shù),又在(0,+∞)上單調(diào)遞增的是( 。
A.y=-x2B.y=x-1C.y=log2|x|D.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.以下四個(gè)命題中是真命題的有①②(填序號(hào)).
①命題“若xy=1,則x,y互為倒數(shù)”的逆命題;
②命題“面積相等的兩個(gè)三角形全等”的否命題;
③命題“若m≤1,則0.005×20×2+0.0025×20=0.25有實(shí)根”的逆否命題;
④命題“若A∩B=B,則A⊆B”的逆否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.下列四種說(shuō)法:
①函數(shù)y=$\frac{{x}^{2}-x+4}{x-1}(x>1)$的最小值為5;
②等差數(shù)列{an}中,a1,a3,a4成等比數(shù)列,則公比為$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,則$\frac{2}{a}+\frac{3}$的最小值為5+2$\sqrt{6}$;
④在平面直角坐標(biāo)系xOy中,已知平面區(qū)域A={(x,y)|x+y≤1,x≥0,y≥0},則平面區(qū)域B={(x+y,x-y)|(x,y)∈A}的面積是1.
其中正確的命題為①③④(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.計(jì)算:
(1)(2$\frac{7}{9}$)0.5+0.5-2+(2$\frac{10}{27}$)${\;}^{-\frac{1}{3}}$-3π0+$\frac{37}{48}$
(2)lg$\frac{1}{2}$-lg$\frac{5}{8}$+lg12.5-log29•log278.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求滿足$\frac{1}{2}$<sinθ≤$\frac{\sqrt{3}}{2}$的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)g(x)=x2f(x),若函數(shù)f(x)為定義在R上的奇函數(shù),其導(dǎo)函數(shù)為f′(x),對(duì)任意實(shí)數(shù)x滿足x2f′(x)>2xf(-x),則不等式g(x)<g(1-3x)的解集是( 。
A.$({\frac{1}{4},+∞})$B.(0,$\frac{1}{4}$)C.$({-∞,\frac{1}{4}})$D.$({-∞,\frac{1}{4}})∪({\frac{1}{4},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,給出了偶函數(shù)y=f(x)的局部圖象,根據(jù)圖象信息下列結(jié)論正確的是( 。  
A.f(-1)-f(2)>0B.f(1)-f(-2)=0C.f(1)-f(2)<0D.f(-1)+f(2)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知四邊形ABCD為平行四邊形,點(diǎn)A的坐標(biāo)為(-1,2),點(diǎn)C在第二象限,$\overrightarrow{AB}=({2,2}),且\overrightarrow{AB}與\overrightarrow{AC}$的夾角為$\frac{π}{4},\overrightarrow{AB}•\overrightarrow{AC}$=2.
(I)求點(diǎn)D的坐標(biāo);
(II)當(dāng)m為何值時(shí),$\overrightarrow{AC}+m\overrightarrow{AB}與\overrightarrow{BC}$垂直.

查看答案和解析>>

同步練習(xí)冊(cè)答案