【題目】北京市的士收費(fèi)辦法如下:不超過2公里收7元(即起步價(jià)7元),超過2公里的里程每公里收2.6元,另每車次超過2公里收燃油附加費(fèi)1元(不考慮其他因素).相應(yīng)收費(fèi)系統(tǒng)的流程圖如圖所示,則①處應(yīng)填(
A.y=7+2.6x
B.y=8+2.6x
C.y=7+2.6(x﹣2)
D.y=8+2.6(x﹣2)

【答案】D
【解析】解:當(dāng)滿足條件x>2時, 即里程超過2公里,
應(yīng)按超過2公里的里程每公里收2.6元,
另每車次超過2公里收燃油附加費(fèi)1元收費(fèi),
∴y=2.6(x﹣2)+7+1=8+2.6(x﹣2)
故選D
【考點(diǎn)精析】根據(jù)題目的已知條件,利用程序框圖的相關(guān)知識可以得到問題的答案,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)為和Sn , 點(diǎn)(n, )在直線y= x+ 上.?dāng)?shù)列{bn}滿足bn+2﹣2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列 的前n項(xiàng)和Tn
(3)設(shè)n∈N* , f(n)= 問是否存在m∈N* , 使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求曲線處的切線方程;

(Ⅱ)探究函數(shù)的極值點(diǎn)情況,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足關(guān)系式:3tSn﹣(2t+3)Sn1=3t(t>0,n=2,3,4…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使 ,求數(shù)列{bn}的通項(xiàng)bn;
(3)求和:b1b2﹣b2b3+b3b4﹣b4b5+…+b2n1b2n﹣b2nb2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:
①經(jīng)過定點(diǎn)P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示;
②經(jīng)過定點(diǎn)A(0,b)的直線都可以用方程y=kx+b表示;
③不經(jīng)過原點(diǎn)的直線都可以用方程 + =1表示;
④經(jīng)過任意兩個不同的 點(diǎn)P1(x1 , y1)、P2(x2 , y2)的直線都可以用方程(y﹣y1)(x2﹣x1)=(x﹣x1)(y2﹣y1)表示;
其中真命題的個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有紅色、白色球各一個,每次任取一個,有放回地抽三次,計(jì)算下列事件的概率:
(1)三次顏色恰有兩次同色;
(2)三次顏色全相同;
(3)三次抽取的球中紅色球出現(xiàn)的次數(shù)多于白色球出現(xiàn)的次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=1﹣3sinx
(1)畫出上述函數(shù)的圖象
(2)求上述函數(shù)的最大值、最小值和周期,并求這個函數(shù)取最大值、最小值的x值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn , 則log2017x1+log2017x2+…+log2017x2016的值為(
A.﹣log20172016
B.﹣1
C.log20172016﹣1
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x>0,y>0,已知( ﹣x+1)( ﹣y+1)=2,則xy﹣2=

查看答案和解析>>

同步練習(xí)冊答案