【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線和曲線的極坐標(biāo)方程;
(2)射線:依次與曲線和曲線交于、兩點(diǎn),射線:依次與曲線和曲線交于、兩點(diǎn),求的最大值.
【答案】(1)的極坐標(biāo)方程為,的極坐標(biāo)方程為;(2).
【解析】
(1)將兩曲線的方程均化為普通方程,然后由可將兩曲線的方程化為極坐標(biāo)方程;
(2)作出圖形,設(shè)點(diǎn)、的極坐標(biāo)分別為、,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程可得出、的表達(dá)式,可得出,利用基本不等式可求出的最大值.
(1)由曲線的參數(shù)方程為(其中為參數(shù)),
所以曲線的普通方程為,
由則曲線的極坐標(biāo)方程為.
又曲線的普通方程為,
由,得曲線的極坐標(biāo)方程為;
(2)如圖,由題意知,
點(diǎn)、的極坐標(biāo)分別為、,
將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,
,
,
,
當(dāng)且僅當(dāng),即,不等式取等號,
因此,的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣3x在x處取得極值.
(1)若對任意x∈(0,+∞),f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍;
(2)討論函數(shù)F(x)=f(x)+x2+k(k∈R)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級有3名同學(xué)報(bào)名參加學(xué)校組織的辯論賽,現(xiàn)有甲、乙兩個(gè)辨題可以選擇,學(xué)校決定讓選手以抽取卡片(除上面標(biāo)的數(shù)不同外其他完全相同)的方式選擇辯題,且每名選手抽取后放回.已知共有10張卡片,卡片上分別標(biāo)有共10個(gè)數(shù).若抽到卡片上的數(shù)為質(zhì)數(shù)(2,3,5,7),則選擇甲辨題,否則選擇乙辯題.
(1)求這3名同學(xué)中至少有1人選擇甲辨題的概率.
(2)用X、Y分別表示這3名同學(xué)中選擇甲、乙辨題的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】撫州市某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登軍峰山健身的活動(dòng),有人參加,現(xiàn)將所有參加人員按年齡情況分為,,,,,,等七組,其頻率分布直方圖如下圖所示.已知之間的參加者有4人.
(1)求和之間的參加者人數(shù);
(2)組織者從之間的參加者(其中共有名女教師包括甲女,其余全為男教師)中隨機(jī)選取名擔(dān)任后勤保障工作,求在甲女必須入選的條件下,選出的女教師的人數(shù)為2人的概率.
(3)已知和之間各有名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有名數(shù)學(xué)教師的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)分別為A(﹣3,0),B(2,1),C(﹣2,3),試求:
(1)邊AC所在直線的方程;
(2)BC邊上的中線AD所在直線的方程;
(3)BC邊上的高AE所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了對教師教學(xué)水平和教師管理水平進(jìn)行評價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對教師教學(xué)水平給出好評的學(xué)生人數(shù)為總數(shù)的,對教師管理水平給出好評的學(xué)生人數(shù)為總數(shù)的,其中對教師教學(xué)水平和教師管理水平都給出好評的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評價(jià)的列聯(lián)表:
對教師管理水平好評 | 對教師管理水平不滿意 | 合計(jì) | |
對教師教學(xué)水平好評 | |||
對教師教學(xué)水平不滿意 | |||
合計(jì) |
請問是否可以在犯錯(cuò)誤概率不超過0.001的前提下,認(rèn)為教師教學(xué)水平好評與教師管理水平好評有關(guān)?
(2)若將頻率視為概率,有4人參與了此次評價(jià),設(shè)對教師教學(xué)水平和教師管理水平全好評的人數(shù)為隨機(jī)變量.
①求對教師教學(xué)水平和教師管理水平全好評的人數(shù)的分布列(概率用組合數(shù)算式表示);
②求的數(shù)學(xué)期望和方差.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為梯形,,,,平面,分別是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若與平面所成的角為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、,、分別為的外心,重心,.
(1)求點(diǎn)的軌跡的方程;
(2)是否存在過的直線交曲線于,兩點(diǎn)且滿足,若存在求出的方程,若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com