【題目】已知橢圓: ()的離心率為, , 分別是它的左、右焦點,且存在直線,使, 關于的對稱點恰好是圓 )的一條直徑的兩個端點.

(1)求橢圓的方程;

(2)設直線與拋物線相交于、兩點,射線、與橢圓分別相交于、.試探究:是否存在數(shù)集,當且僅當時,總存在,使點在以線段為直徑的圓內?若存在,求出數(shù)集;若不存在,請說明理由.

【答案】(1);(2)存在數(shù)集.

【解析】試題分析:(1)由圓的方程配方得半徑為2,由題設知,橢圓的焦距等于圓的直徑,所以,又,可得橢圓方程.

(2)由題可得直線是線段的垂直平分線,由方程與,聯(lián)立可得:

, .又點在以線段為直徑的圓內即,

試題解析:(1)將圓的方程配方得: ,所以其圓心為,半徑為2,由題設知,橢圓的焦距等于圓的直徑,所以

,所以,從而,故橢圓的方程為.

(2)因為產于的對稱點恰好是圓的一條直徑的兩個端點,所以直線是線段的垂直平分線(是坐標原點),故方程為,與,聯(lián)立得: ,由其判別式①.

, ,則 ,

從而, .

因為的坐標為,

所以, ,

注意到同向, 同向,所以

在以線段為直徑的圓內,所以

代入整理得

當且僅當時,總存在,使②成立.

又當時,由韋達定理知方程的兩根均為正數(shù),故使②成立的,從而滿足①.

故存在數(shù)集,當且僅當時,總存在使點在以線段為直徑的圓內.

點晴:本題主要考查直線與圓錐曲線位置關系. 直線和圓錐曲線的位置關系一方面要體現(xiàn)方程思想,另一方面要結合已知條件,從圖形角度求解.聯(lián)立直線與圓錐曲線的方程得到方程組,化為一元二次方程后由根與系數(shù)的關系求解是一個常用的方法. 涉及點在以線段為直徑的圓內,坐標化求解即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求證:BF⊥平面ACFD;

(2)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù),對任意,均有恒成立.下列說法:

的周期為;

②若為常數(shù))的圖像關于直線對稱,則;

③若,則必有;

④已知定義在上的函數(shù)對任意均有成立,且當時, ;又函數(shù)為常數(shù)),若存在使得成立,則的取值范圍是.其中說法正確的是____.(填寫所有正確結論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐SABC中,△ABC是等腰三角形,ABBC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,則點A到平面SBC的距離為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD的底面為矩形,AB,BC=1,E,F分別是AB,PC的中點,DEPA.

(1)求證:EF∥平面PAD;

(2)求證:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側面是直角三角形,PA=6,頂點P在平面ABC內的正投影為點DD在平面PAB內的正投影為點E,連結PE并延長交AB于點G.

)證明:GAB的中點;

)在圖中作出點E在平面PAC內的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,|an+1-an|=pn,n∈N*.

1若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;

2若p=,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·沈陽期中)在直角梯形ABCD中,ABAD,DCABADDC=1,AB=2,E、F分別為ABBC的中點,點P在以A為圓心,AD為半徑的圓弧上變動(如圖所示).若λμ,其中λ,μ∈R,則2λμ的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已經(jīng)函數(shù)的定義域為,設

(1)試確定的取值范圍,使得函數(shù)上為單調函數(shù)

(2)求證

(3)若不等式(為正整數(shù))對任意正實數(shù)恒成立,求的最大值.(解答過程可參考使用以下數(shù)據(jù)

查看答案和解析>>

同步練習冊答案