【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)DD在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.

)證明:GAB的中點(diǎn);

)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.

【答案】)見(jiàn)解析;()作圖見(jiàn)解析,體積為.

【解析】試題分析:證明可得的中點(diǎn).)在平面內(nèi),過(guò)點(diǎn)的平行線交于點(diǎn), 即為在平面內(nèi)的正投影.根據(jù)正三棱錐的側(cè)面是直角三角形且,可得在等腰直角三角形中,可得四面體的體積

試題解析:()因?yàn)?/span>在平面內(nèi)的正投影為,所以

因?yàn)?/span>在平面內(nèi)的正投影為,所以

所以平面,故

又由已知可得, ,從而的中點(diǎn).

)在平面內(nèi),過(guò)點(diǎn)的平行線交于點(diǎn), 即為在平面內(nèi)的正投影.

理由如下:由已知可得 ,又,所以,因此平面,即點(diǎn)在平面內(nèi)的正投影.

連結(jié),因?yàn)?/span>在平面內(nèi)的正投影為,所以是正三角形的中心.

由()知, 的中點(diǎn),所以上,故

由題設(shè)可得平面, 平面,所以,因此

由已知,正三棱錐的側(cè)面是直角三角形且,可得

在等腰直角三角形中,可得

所以四面體的體積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, , 平面.

(1)求證: 平面;

(2)若為線段的中點(diǎn),且過(guò)三點(diǎn)的平面與線段交于點(diǎn),確定點(diǎn)的位置,說(shuō)明理由;并求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m0p(x2)(x6)0,q2mx2m.

(1)pq成立的必要不充分條件求實(shí)數(shù)m的取值范圍;

(2) 成立的充分不必要條件求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,E,F分別是AD,DD1的中點(diǎn).

求證:(1)EF∥平面C1BD

(2)A1C⊥平面C1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓: ()的離心率為, , 分別是它的左、右焦點(diǎn),且存在直線,使, 關(guān)于的對(duì)稱點(diǎn)恰好是圓 )的一條直徑的兩個(gè)端點(diǎn).

(1)求橢圓的方程;

(2)設(shè)直線與拋物線相交于、兩點(diǎn),射線與橢圓分別相交于、.試探究:是否存在數(shù)集,當(dāng)且僅當(dāng)時(shí),總存在,使點(diǎn)在以線段為直徑的圓內(nèi)?若存在,求出數(shù)集;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,該幾何體是由一個(gè)直三棱柱和一個(gè)正四棱錐組合而成, ,

(Ⅰ)證明:平面平面

(Ⅱ)求正四棱錐的高,使得二面角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

當(dāng)時(shí), 恒成立,求范圍;

方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·懷仁期中)已知命題x∈[-1,2],函數(shù)f(x)=x2x的值大于0.若是真命題,則命題可以是(  )

A. x∈(-1,1),使得cos x<

B. “-3<m<0”是“函數(shù)f(x)=x+log2xm在區(qū)間上有零點(diǎn)”的必要不充分條件

C. 直線x是曲線f(x)=的一條對(duì)稱軸

D. x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點(diǎn)處的切線的斜率不小于-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的極值及單調(diào)區(qū)間;

(2)若在區(qū)間上至少存在一點(diǎn),使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案