【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且滿足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.

【答案】
(1)解:∵sinA+sinB=[cosA﹣cos(π﹣B)]sinC,

∴sinA+sinB=(cosA+cosB)sinC,

由正弦定理和余弦定理得,

a+b=( + )c,

化簡得,2a2b+2ab2=ab2+ac2﹣a3+ba2+bc2﹣b3

a2b+ab2=ac2﹣a3+bc2﹣b3,

(a+b)(a2+b2﹣c2)=0,

又a+b>0,∴a2+b2﹣c2=0,即a2+b2=c2,

∴△ABC為直角三角形,且∠C=90°


(2)解:∵a+b+c=1+ ,a2+b2=c2,

∴1+ =a+b+ ≥2 + =(2+

當(dāng)且僅當(dāng)a=b時(shí)上式等號(hào)成立,則 = ,

∴SABC= ab≤ × =

即△ABC面積的最大值為


【解析】(1)由誘導(dǎo)公式、正弦定理和余弦定理化簡已知的式子,化簡后由邊的關(guān)系判斷出三角形的形狀;(2)由(1)和條件化簡后,由基本不等式化簡求出 的范圍,表示三角形的面積,即可求出答案.
【考點(diǎn)精析】利用正弦定理的定義和余弦定理的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線E: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , P是E坐支上一點(diǎn),且|PF1|=|F1F2|,直線PF2與圓x2+y2=a2相切,則E的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 兩個(gè)變量的相關(guān)關(guān)系一定是線性相關(guān)

B. 兩個(gè)隨機(jī)變量的線性相關(guān)線越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于0

C. 在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加1個(gè)單位

D. 對(duì)分類變量,隨機(jī)變量的觀測(cè)值越大,則判斷“有關(guān)系”的把握程度越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在天內(nèi)每件的銷售價(jià)格(元)與時(shí)間)(天)的函數(shù)關(guān)系滿足函數(shù),該商品在天內(nèi)日銷售量(件)與時(shí)間)(天)之間滿足一次函數(shù)關(guān)系如下表:

(1)根據(jù)表中提供的數(shù)據(jù),確定日銷售量與時(shí)間的一次函數(shù)關(guān)系式;

(2)求該商品的日銷售金額的最大值并指出日銷售金額最大的一天是天中的第幾天,(日銷售金額每件的銷售價(jià)格日銷售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)上的點(diǎn)到右焦點(diǎn)F的最小距離是 ﹣1,F(xiàn)到上頂點(diǎn)的距離為 ,點(diǎn)C(m,0)是線段OF上的一個(gè)動(dòng)點(diǎn).
(1)求橢圓的方程;
(2)是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A、B兩點(diǎn),使得( + )⊥ ,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=sin(2x﹣ )的圖象向左平移 個(gè)單位后,所得函數(shù)圖象的一條對(duì)稱軸為(
A.x=0
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝批發(fā)市場(chǎng)1-5月份的服裝銷售量與利潤的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷售量 (萬件)

3

6

4

7

8

利潤 (萬元)

19

34

26

41

46

1)從這五個(gè)月的利潤中任選2個(gè)分別記為 ,求事件, 均不小于30”的概率;

2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請(qǐng)根據(jù)前4個(gè)月的數(shù)據(jù),求出關(guān)于的線性回歸方程;

3)若由線性回歸方程得到的利潤的估計(jì)數(shù)據(jù)與真實(shí)數(shù)據(jù)的誤差不超過2萬元,則認(rèn)為得到的利潤的估計(jì)數(shù)據(jù)是理想的請(qǐng)用表格中第5個(gè)月的數(shù)據(jù)檢驗(yàn)由(2)中回歸方程所得的第5個(gè)月的利潤的估計(jì)數(shù)據(jù)是否理想參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知橢圓C: + =1(a>b>0)的焦距為2,直線y=x被橢圓C截得的弦長為

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)M(x0 , y0)是橢圓C上的動(dòng)點(diǎn),過原點(diǎn)O引兩條射線l1 , l2與圓M:(x﹣x02+(y﹣y02= 分別相切,且l1 , l2的斜率k1 , k2存在.
①試問k1k2是否定值?若是,求出該定值,若不是,說明理由;
②若射線l1 , l2與橢圓C分別交于點(diǎn)A,B,求|OA||OB|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案