【題目】已知橢圓 =1(a>b>0)上的點(diǎn)到右焦點(diǎn)F的最小距離是 ﹣1,F(xiàn)到上頂點(diǎn)的距離為 ,點(diǎn)C(m,0)是線段OF上的一個(gè)動(dòng)點(diǎn).
(1)求橢圓的方程;
(2)是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A、B兩點(diǎn),使得( + )⊥ ,并說明理由.

【答案】
(1)解:由題意可知a﹣c= ﹣1且 ,

解得a= ,b=c=1,

∴橢圓的方程為


(2)解:由(1)得F(1,0),所以0≤m≤1.

假設(shè)存在滿足題意的直線l,設(shè)l的方程為

y=k(x﹣1),代入 ,

得(2k2+1)x2﹣4k2x+2k2﹣2=0,

設(shè)A(x1,y1),B(x2,y2),

,

,

而AB的方向向量為(1,k),

∴當(dāng)0≤m< 時(shí),k=± ,即存在這樣的直線l;

當(dāng) ≤m≤1時(shí),k不存在,即不存在這樣的直線l


【解析】(1)由題意可知a﹣c= ﹣1且 ,解得a= ,b=c=1,由此可求出橢圓的方程.(2)假設(shè)存在滿足題意的直線l,設(shè)l的方程為y=k(x﹣1),代入 ,得(2k2+1)x2﹣4k2x+2k2﹣2=0,設(shè)A(x1 , y1),B(x2 , y2),再由根與系數(shù)的關(guān)系結(jié)合題設(shè)條件能夠?qū)С霾淮嬖谶@樣的直線l.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,為常數(shù),且,

(I)若方程有唯一實(shí)數(shù)根,求函數(shù)的解析式.

(II)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值.

(III)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,,分別為棱的中點(diǎn).

(1)求證:平面;

(2)若平面平面,且,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,AC=AA1=2,AB=BC=2 ,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點(diǎn)D.

(1)求證:BC1⊥平面AA1C1C;
(2)求二面角C1﹣AB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系xOy中,過點(diǎn)P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點(diǎn)M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=ax2+2x﹣lnx(aR).

Ⅰ)若 a=4,求函數(shù) f(x)的極值;

Ⅱ)若 f′(x)在區(qū)間(0,1)內(nèi)有唯一的零點(diǎn) x0,求 a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市為了解端午節(jié)期間粽子的銷售量,對其所在銷售范圍內(nèi)的1000名消費(fèi)者在端午節(jié)期間的粽子購買量(單位:g)進(jìn)行了問卷調(diào)查,得到如圖所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中a的值;

(Ⅱ)求這1000名消費(fèi)者的棕子購買量在600g1400g的人數(shù);

(Ⅲ)求這1000名消費(fèi)者的人均粽子購買量(頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3ax2bxc,x∈[-2,2]表示過原點(diǎn)的曲線,且在x=±1處的切線的傾斜角均為π,有以下命題:

f(x)的解析式為f(x)=x3-4xx∈[-2,2].

f(x)的極值點(diǎn)有且只有一個(gè).

f(x)的最大值與最小值之和等于零.

其中正確命題的序號為________

查看答案和解析>>

同步練習(xí)冊答案