【題目】在平面直角坐標系中,離心率為的橢圓過點.
(1)求橢圓的標準方程;
(2)若直線上存在點,且過點的橢圓的兩條切線相互垂直,求實數(shù)的取值范圍.
【答案】(1) (2)
【解析】
(1)根據(jù)離心率為的橢圓過點,結(jié)合性質(zhì) ,列出關(guān)于 、 、的方程組,求出 、即可得結(jié)果;(2)設切線方程為,代入橢圓方程得,則,化為,利用直線與圓有公共點,即可得結(jié)果.
(1)由題意,解得,又,解得
所以橢圓C的標準方程為.
(2)①當過點的橢圓的一條切線的斜率不存在時,另一條切線必垂直于軸,易得
②當過點的橢圓的切線的斜率均存在時,設
切線方程為,
代入橢圓方程得,
,
化簡得:,
由此得,
設過點的橢圓的切線的斜率分別為,所以.
因為兩條切線相互垂直,所以,即,
由①②知在圓上,又點在直線上,
所以直線與圓有公共點,
所以,所以.
綜上所述,的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知兩定點,點是平面內(nèi)的動點,且,記的軌跡是
(1)求曲線的方程;
(2)過點引直線交曲線于兩點,設,點關(guān)于軸的對稱點為,證明直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢:()過點,且橢圓的離心率為.過橢圓左焦點且斜率為1的直線與橢圓交于,兩點.
(1)求橢圓的方程;
(2)求線段的垂直平分線的方程;
(3)求三角形的面積.(為坐標原點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:過點和點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在處的切線方程;
(2)函數(shù)在區(qū)間上有零點,求的值;
(3)若不等式對任意正實數(shù)恒成立,求正整數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,,為常數(shù)),當時,只有一個實根;當時,只有3個相異實根,現(xiàn)給出下列4個命題:
①和有一個相同的實根;
②和有一個相同的實根;
③的任一實根大于的任一實根;
④的任一實根小于的任一實根.
其中真命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.
(1)求直線的直角坐標方程與曲線的普通方程;
(2)若是曲線上的動點,為線段的中點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,若過點且斜率為1的直線與拋物線交于 兩點,且.
(1)求拋物線的方程;
(2)若平行于的直線與拋物線相切于點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com