2.若函數(shù)f(x)=2sin(ωx+φ)(ω≠0,φ>0)是偶函數(shù),則φ的最小值為$\frac{π}{2}$.

分析 由題意可得f(-$\frac{π}{2}$)=f($\frac{π}{2}$),可得φ=kπ+$\frac{π}{2}$(k∈Z)結(jié)合φ為正數(shù)可得答案.

解答 解:∴函數(shù)f(x)=2sin(ωx+φ)(ω≠0,φ>0)是偶函數(shù),
∴f(-$\frac{π}{2}$)=f($\frac{π}{2}$),即2sin(-$\frac{π}{2}$ω+φ)=2sin($\frac{π}{2}$ω+φ),
∴-$\frac{π}{2}$ω+φ=$\frac{π}{2}$ω+φ,或-$\frac{π}{2}$ω+φ+$\frac{π}{2}$ω+φ=2kπ+π,
∴ω=0(舍去)或φ=kπ+$\frac{π}{2}$(k∈Z)
∴正數(shù)φ的最小值為$\frac{π}{2}$
故答案為:$\frac{π}{2}$

點評 本題考查三角函數(shù)的奇偶性,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若loga$\frac{4}{5}$<1,則a的取值范圍是( 。
A.($\frac{4}{5}$,1)B.($\frac{4}{5}$,+∞)C.(0,$\frac{4}{5}$)∪(1,+∞)D.(0,$\frac{4}{5}$)∪($\frac{4}{5}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,(x≥0)}\\{{x}^{2}+mx-1,(x<0)}\end{array}\right.$是偶函數(shù).
(1)求實數(shù)m的值;
(2)作出函數(shù)y=f(x)的圖象,并寫出其單調(diào)區(qū)間;
(3)若函數(shù)y=f(x)-k有4個零點,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以原點O為圓心作一個單位圓,角α和角β的終邊與單位圓分別交于A、B兩點,且|$\overrightarrow{AB}$|=$\frac{{2\sqrt{5}}}{5}$.若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,sinβ=-$\frac{5}{13}$.
(1)求△AOB的面積;
(2)求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)p:$\frac{2x-1}{x-1}≤0$,q:x2-(2a+1)x+a(a+1)<0,若p是q的充分不必要條件,則實數(shù)a的取值范圍是( 。
A.$(0,\frac{1}{2})$B.$[0,\frac{1}{2})$C.$(0,\frac{1}{2}]$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若數(shù)列{an}中,a1=$\frac{1}{3}$,an+1=$\frac{n+1}{3n}$an
(Ⅰ)證明:{$\frac{{a}_{n}}{n}$}是等比數(shù)列,并求{an}的通項公式;
(Ⅱ)若{an}的前n項和為Sn,求證Sn$<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)$f(x)=\vec m•\vec n$,其中向量$\vec m=({1,2cosx})$,$\vec n=({\sqrt{3}sin2x,cosx})$.
(1)求函數(shù)f(x)的最小正周期與單調(diào)遞增區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f( A)=2,b=1,△ABC的面積為$\sqrt{3}$,求△ABC外接圓半徑R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}y≤3\\ 3x+7y-24≤0\\ x+3y-8≥0\end{array}\right.$,則z=|x|+2y的最大值是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知銳角△ABC中,A=60°,O是△ABC外接圓的圓心,且$\overrightarrow{OA}$=$\overrightarrow{xOB}$+$\overrightarrow{yOC}$,(x,y∈R),則2x-y的取值范圍是(-2,1).

查看答案和解析>>

同步練習(xí)冊答案