【題目】通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力著老師講課時間的變化而變化,講課開始時,學(xué)生的興趣激增;中間有一段時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)f(t)表示學(xué)生注意力隨時間t(分鐘)的變化規(guī)律\left(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實驗分析得知:
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,教師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
【答案】(1)講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘;(2)講課開始25分鐘時,學(xué)生的注意力比講課開始后5分鐘更集中;(3)經(jīng)過適當(dāng)安排,老師可以在學(xué)生達(dá)到所需要的狀態(tài)下講授完這道題.
【解析】試題分析:應(yīng)用問題首先要認(rèn)真細(xì)致的讀題審題,本題為分段函數(shù)問題,根據(jù)分段函數(shù)問題分段處理原則,針對每一段函數(shù)根據(jù)相應(yīng)的定義域要求,求出每一段的最大值,再比較得出最大值;比較兩個函數(shù)值的大小,按兩個自變量的大小,分別對號入座,求出相應(yīng)的函數(shù)值后,再比較大小;分段函數(shù)解不等式問題,在每段的定義域下分別解不等式,再取三段的解集的并集.
試題解析:
(1)當(dāng)0<t10時,f(t)=t2+24t+100
=(t12)2+244是增函數(shù),且f(10)=240;
當(dāng)20<t40時,f(t)=7t+380是減函數(shù),
且f(20)=240.
所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。
(2)f(5)=195,f(25)=205,
故講課開始25分鐘時,學(xué)生的注意力比講課開始后5分鐘更集中。
(3)當(dāng)0<t10時,f(t)=t2+24t+100=180,則t=4;
當(dāng)20<t40時,令f(t)=7t+380=180,
t≈28.57,則學(xué)生注意力在180以上所持續(xù)的時間
28.574=24.57>24,
所以,經(jīng)過適當(dāng)安排,老師可以在學(xué)生達(dá)到所需要的狀態(tài)下講授完這道題。
【點精】應(yīng)用問題首先要認(rèn)真細(xì)致的審題,逐字逐句的讀題,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.本題為分段函數(shù)問題,根據(jù)分段函數(shù)問題分段處理原則,分段函數(shù)涉及到定義域、值域、單調(diào)性、奇偶性、最值、解方程和解不等式諸多問題,分段函數(shù)的定義域為各段定義域的并集,求最值時,針對每一段函數(shù)根據(jù)相應(yīng)的定義域要求,求出每一段的極大值,再比較得出最大值;比較兩個函數(shù)值的大小,按兩個自變量的大小,分別對號入座,求出相應(yīng)的函數(shù)值后,再比較大��;分段函數(shù)解不等式問題,在每段的定義域下分別解不等式,再取三段的解集的并集;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐中,
, △
是斜邊
的等腰直角三角形, 以下結(jié)論中: ① 異面直線
與
所成的角為
;② 直線
平面
;③ 面
面
;④ 點
到平面
的距離是
. 其中正確結(jié)論的序號是 ____________________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,函數(shù)
與
在
處的切線互相垂直,求
的值;
(2)若函數(shù)在定義域內(nèi)不單調(diào),求
的取值范圍;
(3)是否存在正實數(shù),使得
對任意正實數(shù)
恒成立?若存在,求出滿足條件的實數(shù)
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機是否與年齡有關(guān),現(xiàn)隨機抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機與年齡有關(guān)?
購買意愿強 | 購買意愿弱 | 合計 | |
20~40歲 | |||
大于40歲 | |||
合計 |
(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機抽取2人進(jìn)行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為,求
的分布列和數(shù)學(xué)期望.
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
滿足關(guān)系
(其中
是常數(shù)).
()如果
,
,求函數(shù)
的值域;
()如果
,
,且對任意
,存在
,
,使得
恒成立,求
的最小值;
()如果
,求函數(shù)
的最小正周期(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出四種說法:
①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了保護(hù)環(huán)境,實現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護(hù)區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設(shè)計才能使公園占地面積最大,求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的右焦點與拋物線的焦點重合,點M
在橢圓E上.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),直線
與橢圓E交于A,B兩點,若直線PA,PB關(guān)于x軸對稱,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com