【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,貴陽(yáng)一中“保護(hù)飲用水源地”課題研究小組的同學(xué)們對(duì)紅楓湖、百花湖、阿哈水庫(kù)、花溪水庫(kù)、北郊水庫(kù)5處水源地進(jìn)行了樣本采集并送環(huán)保部門進(jìn)行水質(zhì)檢測(cè).已知5處水源地中有1處被某污染物污染,需要通過(guò)檢測(cè)水源樣本來(lái)確定被污染的水源地現(xiàn)有三個(gè)檢測(cè)方案:

方案甲:對(duì)5個(gè)樣本逐個(gè)檢測(cè),直到能確定被污染的水源地為止.

方案乙:先任取1個(gè)樣本進(jìn)行檢測(cè),若檢測(cè)到污染物,則檢測(cè)結(jié)束;若未檢測(cè)到污染物,則在剩余4個(gè)樣本中任取2個(gè),并將這2個(gè)樣本取部分混合在一起檢測(cè),若檢測(cè)到污染物,則再在這2個(gè)樣本中任取一個(gè)檢測(cè),否則在剩余2個(gè)未檢測(cè)樣本中任取一個(gè)檢測(cè).

方案丙:先任取2個(gè)樣本,并將這2個(gè)樣本取部分混合在一起檢測(cè),若檢測(cè)到污染物,則再在這2個(gè)樣本中任取一個(gè)檢測(cè);若未檢測(cè)到污染物,則對(duì)剩余3個(gè)未檢測(cè)樣本進(jìn)行逐個(gè)檢測(cè),直到能確定被污染的水源地為止.假設(shè)隨機(jī)變量分別表示用方案甲、方案乙、方案丙進(jìn)行檢測(cè)所需的檢測(cè)次數(shù).

1)求能取到的最大值和其對(duì)應(yīng)的概率;

2)求的期望假設(shè)每次檢測(cè)的費(fèi)用都相同,請(qǐng)從經(jīng)濟(jì)角度說(shuō)明方案乙和方案丙哪一個(gè)更適合?

【答案】1的最大值為4,;的最大值為3,;的最大值為32)方案丙更適合

【解析】

1)根據(jù)題意可分析得到用方案甲最多需檢測(cè)4次,即前3次均未檢測(cè)到污染物;用方案乙最多需檢測(cè)3次,即先任取1個(gè)樣本進(jìn)行檢測(cè)時(shí)未檢測(cè)到污染物;用方案丙最多需檢測(cè)3次,即先任取2個(gè)樣本混合檢測(cè)時(shí)未檢測(cè)到污染物,且對(duì)剩余3個(gè)樣本檢測(cè)時(shí)第一次未檢測(cè)到污染物,分別求得概率即可;

(2)的可能取值為1,3,由(1)可得,即可求得;的可能取值為2,3,由(1)可得,即可求得,比較,越小的越合適.

解:(1)用方案甲最多需檢測(cè)4次,即前3次均未檢測(cè)到污染物,

的最大值為4,所以;

用方案乙最多需檢測(cè)3次,即先任取1個(gè)樣本進(jìn)行檢測(cè)時(shí)未檢測(cè)到污染物,

的最大值為3,;

用方案丙最多需檢測(cè)3次,即先任取2個(gè)樣本混合檢測(cè)時(shí)未檢測(cè)到污染物,且對(duì)剩余3個(gè)樣本檢測(cè)時(shí)第一次未檢測(cè)到污染物,

的最大值為3,.

2的可能取值為1,3,由(1)可知,所以,

;

的可能取值為2,3,由(1)可知,所以,

,

因?yàn)?/span>,所以方案丙所需的檢測(cè)次數(shù)期望較少,所需的檢測(cè)費(fèi)用期望較低,所以方案丙更適合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電公司進(jìn)行關(guān)于消費(fèi)檔次的調(diào)查,根據(jù)家庭年均家電消費(fèi)額將消費(fèi)檔次分為4組:不超過(guò)3000元、超過(guò)3000元且不超過(guò)5000元、超過(guò)5000元且不超過(guò)10000元、超過(guò)10000元,從A、B兩市中各隨機(jī)抽取100個(gè)家庭,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

消費(fèi)

檔次

不超過(guò)3000

超過(guò)3000

且不超過(guò)5000

超過(guò)5000

且不超過(guò)10000

超過(guò)10000

A

20

50

20

10

B

50

30

10

10

年均家電消費(fèi)額不超過(guò)5000元的家庭視為中低消費(fèi)家庭,超過(guò)5000元的視為中高消費(fèi)家庭.

1)從A市的100個(gè)樣本中任選一個(gè)家庭,求此家庭屬于中低消費(fèi)家庭的概率;

2)現(xiàn)從A、B兩市中各任選一個(gè)家庭,分別記為甲、乙,估計(jì)甲的消費(fèi)檔次不低于乙的消費(fèi)檔次的概率;

3)以各消費(fèi)檔次的區(qū)間中點(diǎn)對(duì)應(yīng)的數(shù)值為該檔次的家庭年均家電消費(fèi)額,估計(jì)A、B兩市中,哪個(gè)市的家庭年均家電消費(fèi)額的方差較大(直接寫出結(jié)果,不必說(shuō)明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對(duì)數(shù)的底)上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,BC的對(duì)邊,且(2bccosAacosC

1)求A

2)若△ABC的面積為,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).M是曲線上的動(dòng)點(diǎn),將線段OM繞O點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若橢圓的離心率等于,拋物線的焦點(diǎn)在橢圓的頂點(diǎn)上.

1)求拋物線的方程;

2)若過(guò)的直線與拋物線交于、兩點(diǎn),又過(guò)、作拋物線的切線、,當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,直線與曲線y=fx)和y=gx)分別交于M,N兩點(diǎn),設(shè)曲線y=fx)在點(diǎn)M處的切線為,在點(diǎn)N處的切線為

1)當(dāng)b=1時(shí),若,求a的值

2)若,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正整數(shù)對(duì)作如下分組

則第100個(gè)數(shù)對(duì)為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某果園種植“糖心蘋果”已有十余年,為了提高利潤(rùn),該果園每年投入一定的資金,對(duì)種植采摘包裝宣傳等環(huán)節(jié)進(jìn)行改進(jìn).如圖是2009年至2018年,該果園每年的投資金額(單位:萬(wàn)元)與年利潤(rùn)增量(單位:萬(wàn)元)的散點(diǎn)圖:

該果園為了預(yù)測(cè)2019年投資金額為20萬(wàn)元時(shí)的年利潤(rùn)增量,建立了關(guān)于的兩個(gè)回歸模型;

模型①:由最小二乘公式可求得的線性回歸方程:;

模型②:由圖中樣本點(diǎn)的分布,可以認(rèn)為樣本點(diǎn)集中在曲線:的附近,對(duì)投資金額做交換,令,則,且有,,,.

(1)根據(jù)所給的統(tǒng)計(jì)量,求模型②中關(guān)于的回歸方程;

(2)分別利用這兩個(gè)回歸模型,預(yù)測(cè)投資金額為20萬(wàn)元時(shí)的年利潤(rùn)增量(結(jié)果保留兩位小數(shù));

(3)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并說(shuō)明誰(shuí)的預(yù)測(cè)值精度更高更可靠.

回歸模型

模型①

模型②

回歸方程

102.28

36.19

附:樣本的最小乘估計(jì)公式為,;

相關(guān)指數(shù).

參考數(shù)據(jù):,.

查看答案和解析>>

同步練習(xí)冊(cè)答案