【題目】某果園種植“糖心蘋果”已有十余年,為了提高利潤,該果園每年投入一定的資金,對種植采摘包裝宣傳等環(huán)節(jié)進行改進.如圖是2009年至2018年,該果園每年的投資金額(單位:萬元)與年利潤增量(單位:萬元)的散點圖:

該果園為了預測2019年投資金額為20萬元時的年利潤增量,建立了關于的兩個回歸模型;

模型①:由最小二乘公式可求得的線性回歸方程:;

模型②:由圖中樣本點的分布,可以認為樣本點集中在曲線:的附近,對投資金額做交換,令,則,且有,,,.

(1)根據(jù)所給的統(tǒng)計量,求模型②中關于的回歸方程;

(2)分別利用這兩個回歸模型,預測投資金額為20萬元時的年利潤增量(結(jié)果保留兩位小數(shù));

(3)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關指數(shù),并說明誰的預測值精度更高更可靠.

回歸模型

模型①

模型②

回歸方程

102.28

36.19

附:樣本的最小乘估計公式為,;

相關指數(shù).

參考數(shù)據(jù):,.

【答案】(1).(2)(萬元)(3)答案見解析

【解析】

(1)根據(jù)題設中的數(shù)據(jù)和公式,求得 的值,即可得到回歸直線的方程;

(2),代入回歸直線的方程,即可求得求得模型①的年利潤增量的預測值和模型②的年利潤增量的預測值;

(3),可得模型①的小于模型②,說明回歸模型②刻畫的擬合效果更好,得到結(jié)論.

(1)由題意,知,,可得,,

又由,

所以,模型②中關于的回歸方程.

(2),模型①的年利潤增量的預測值為(萬元),

,模型②的年利潤增量的預測值為

(萬元),

(3)由表格中的數(shù)據(jù),可得,,

所以模型①的小于模型②,說明回歸模型②刻畫的擬合效果更好,

所以當,模型②的預測值比模型①的預測值,精度更高更可靠.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,貴陽一中“保護飲用水源地”課題研究小組的同學們對紅楓湖、百花湖、阿哈水庫、花溪水庫、北郊水庫5處水源地進行了樣本采集并送環(huán)保部門進行水質(zhì)檢測.已知5處水源地中有1處被某污染物污染,需要通過檢測水源樣本來確定被污染的水源地現(xiàn)有三個檢測方案:

方案甲:對5個樣本逐個檢測,直到能確定被污染的水源地為止.

方案乙:先任取1個樣本進行檢測,若檢測到污染物,則檢測結(jié)束;若未檢測到污染物,則在剩余4個樣本中任取2個,并將這2個樣本取部分混合在一起檢測,若檢測到污染物,則再在這2個樣本中任取一個檢測,否則在剩余2個未檢測樣本中任取一個檢測.

方案丙:先任取2個樣本,并將這2個樣本取部分混合在一起檢測,若檢測到污染物,則再在這2個樣本中任取一個檢測;若未檢測到污染物,則對剩余3個未檢測樣本進行逐個檢測,直到能確定被污染的水源地為止.假設隨機變量分別表示用方案甲、方案乙、方案丙進行檢測所需的檢測次數(shù).

1)求能取到的最大值和其對應的概率;

2)求的期望假設每次檢測的費用都相同,請從經(jīng)濟角度說明方案乙和方案丙哪一個更適合?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家劉徽在其《海島算經(jīng)》中給出了著名的望海島問題及二次測望方法:今有望海島,立兩表,齊高三丈,前后相去千步,令后表與前表三相直.從前表卻行一百二十三步,人目著地取望島峰,與表末三合.從后表卻行一百二十七步,人目著地取望島峰,亦與表末三合.問島高及去表各幾何?這一方法領先印度500多年,領先歐洲1300多年.其大意為:測量望海島PQ的高度及海島離岸距離,在海岸邊立兩根等高的標桿共面,均垂直于地面),使目測點EP、B共線,目測點FPD共線,測出AE、CF、AC即可求出島高和距離(如圖).,則________;______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示, 是邊長為3的正方形, 平面與平面所成角為.

(Ⅰ)求證: 平面

(Ⅱ)設點是線段上一個動點,試確定點的位置,使得平面,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的定義域為,若存在一次函數(shù),使得對于任意的,都有恒成立,則稱函數(shù)上的弱漸進函數(shù).下列結(jié)論正確的是______.(寫出所有正確命題的序號)

上的弱漸進函數(shù);

上的弱漸進函數(shù);

上的弱漸進函數(shù);

上的弱漸進函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中取兩個定點,再取兩個動點,且.

(1)求直線的交點的軌跡的方程;

(2)的直線與軌跡交于兩點,過點軸且與軌跡交于另一點,為軌跡的右焦點,若,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是邊長為2的菱形,,都垂直于平面,且.

1)證明:平面;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術創(chuàng)新活動,在實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖,記綜合評分為80分及以上的花苗為優(yōu)質(zhì)花苗.

1)用樣本估計總體,以頻率作為概率,若在兩塊實驗地隨機抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學期望;

2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認為優(yōu)質(zhì)花苗與培育方法有關.

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計

甲培育法

20

乙培育法

10

合計

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

同步練習冊答案