【題目】數(shù)列是公比為正數(shù)的等比數(shù)列,,;數(shù)列項和為,滿足,.

1)求,及數(shù)列,的通項公式;

2)求.

【答案】1,,,,(2,

【解析】

1)方法一:(數(shù)列定義)易知,可得,故,;,,,則,,兩式相減得,則,,同理兩式相減得,,則為等差數(shù)列,故.

1)方法二:(數(shù)學(xué)歸納法)

同方法一,猜想,,然后再利用數(shù)學(xué)歸納法證明.

2)方法一:利用錯位相減法求和,由(1)可知,,則,兩式相減整理得, ,.

2)方法二:利用裂項求和,由(1)可知,注意到,再采用裂項相消法求和.

1)方法一:(數(shù)列定義)

易知,解得,又公比為正數(shù),則,故;,,則,,兩式相減得,則,同理兩式相減得(注:,也符合),則為等差數(shù)列,故.

1)方法二:(數(shù)學(xué)歸納法)

易知,解得,又公比為正數(shù),則,故,;,,猜想,,用數(shù)學(xué)歸納法證明.

①當(dāng)時,成立;

②假設(shè)當(dāng)時,成立,

當(dāng)時,,則,即,故當(dāng)時,結(jié)論也成立.由①②可知,對于任意的,均成立.

2)方法一:(錯位相減法求和)

由(1)可知,,

,兩式相減整理得,

,.

2)方法二:(裂項求和)

由(1)可知,注意到,

,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把方程表示的曲線作為函數(shù)的圖象,則下列結(jié)論正確的有(

A.的圖象不經(jīng)過第一象限

B.上單調(diào)遞增

C.的圖象上的點到坐標(biāo)原點的距離的最小值為

D.函數(shù)不存在零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線在y軸上的截距為.

1)求a;

2)討論函數(shù)的單調(diào)性;

3)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,當(dāng)時,恒有;

1)求的表達式;

2)設(shè)不等式,的解集為,且,求實數(shù)的取值范圍;

3)若方程的解集為,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,離心率為,點是橢圓上的一個動點,且面積的最大值為.

1)求橢圓的方程;

2)過點作直線交橢圓兩點,過點作直線的垂線交圓:于另一點.的面積為3,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域是,且,,當(dāng)時,.

1)判斷的奇偶性,并說明理由;

2)求在區(qū)間上的解析式;

3)是否存在整數(shù),使得當(dāng)時,不等式有解?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓與直線相切于點,與正半軸交于點,與直線在第一象限的交點為. 為圓上任一點,且滿足,以為坐標(biāo)的動點的軌跡記為曲線

1)求圓的方程及曲線的方程;

2)若兩條直線分別交曲線于點,求四邊形面積的最大值,并求此時的的值.

3)已知曲線的軌跡為橢圓,研究曲線的對稱性,并求橢圓的焦點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放)個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.

1)若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?

2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實數(shù),函數(shù)

1)若函數(shù)是偶函數(shù),求實數(shù)的值;

2)若,求函數(shù)的最小值;

3)對于函數(shù),在定義域內(nèi)給定區(qū)間,如果存在,滿足,則稱函數(shù)是區(qū)間上的平均值函數(shù),是它的一個均值點.如函數(shù)上的平均值函數(shù),就是它的均值點.現(xiàn)有函數(shù)是區(qū)間上的平均值函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案