【題目】2019年7曰1日至3日,世界新能源汽車(chē)大會(huì)在海南博鰲召開(kāi),大會(huì)著眼于全球汽車(chē)產(chǎn)業(yè)的轉(zhuǎn)型升級(jí)和生態(tài)環(huán)境的持續(xù)改善.某汽車(chē)公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車(chē),并在出廠前對(duì)100輛汽車(chē)進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車(chē)所裝載的燃料或電池所能夠提供給車(chē)行駛的最遠(yuǎn)里程)的測(cè)試.現(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如下的頻率分布直方圖:

(1)估計(jì)這100輛汽車(chē)的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

(2)根據(jù)大量的汽車(chē)測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車(chē)的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問(wèn)中樣本標(biāo)準(zhǔn)差的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車(chē),求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布,則,,.

(3)某汽車(chē)銷(xiāo)售公司為推廣此款新能源汽車(chē),現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車(chē)在方格圖上行進(jìn),若遙控車(chē)最終停在“勝利大本營(yíng)”,則可獲得購(gòu)車(chē)優(yōu)惠券.已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第50格.遙控車(chē)開(kāi)始在第0格,客戶每擲一次硬幣,遙控車(chē)車(chē)向前移動(dòng)一次,若擲出正面,遙控車(chē)向前移動(dòng)一格(從),若擲出反面,遙控車(chē)向前移動(dòng)兩格(從),直到遙控車(chē)移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束,設(shè)遙控車(chē)移到第n格的概率為,試說(shuō)明是等比數(shù)列,并解釋此方案能否成功吸引顧客購(gòu)買(mǎi)該款新能源汽車(chē).

【答案】(1)(千米)(2)(3)說(shuō)明詳見(jiàn)解析,此方案能夠成功吸引顧客購(gòu)買(mǎi)該款新能源汽車(chē)

【解析】

(1)利用頻率分布直方圖的平均數(shù)的計(jì)算方法即可得出

(2)由,.利用正態(tài)分布的對(duì)稱性可得

(3)遙控車(chē)開(kāi)始在第0 格為必然事件,.第一次擲硬幣出現(xiàn)正面,遙控車(chē)移到第一格,其概率為,即.遙控車(chē)移到第格的情況是下面兩種,而且只有兩種:①遙控車(chē)先到第格,又?jǐn)S出反面,其概率為.②遙控車(chē)先到第格,又?jǐn)S出正面,其概率為.可得:.變形為.即可證明時(shí),數(shù)列是等比數(shù)列,首項(xiàng)為,公比為的等比數(shù)列.利用,及其求和公式即可得出.可得獲勝的概率,失敗的概率.進(jìn)而得出結(jié)論.

解:(1)

(千米).

(2)由,

(3)遙控車(chē)開(kāi)始在第0 格為必然事件,.第一次擲硬幣出現(xiàn)正面,遙控車(chē)移到第一格,其概率為,即

遙控車(chē)移到第格的情況是下面兩種,而且只有兩種:

①遙控車(chē)先到第格,又?jǐn)S出反面,其概率為

②遙控車(chē)先到第格,又?jǐn)S出正面,其概率為

時(shí),數(shù)列是等比數(shù)列,首項(xiàng)為,公比為的等比數(shù)列.

,,,

,1,,

獲勝的概率

失敗的概率

獲勝的概率大.

此方案能成功吸引顧客購(gòu)買(mǎi)該款新能源汽車(chē).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次期末數(shù)學(xué)測(cè)試中,唐老師任教班級(jí)學(xué)生的考試得分情況如表所示:

分?jǐn)?shù)區(qū)間

人數(shù)

2

8

32

38

20

1)根據(jù)上述表格,試估計(jì)唐老師所任教班級(jí)的學(xué)生在本次期末數(shù)學(xué)測(cè)試的平均成績(jī);

2)現(xiàn)從成績(jī)?cè)?/span>中按照分?jǐn)?shù)段,采取分層抽樣的方法隨機(jī)抽取5人,再在這5人中隨機(jī)抽取2人作小題得分分析,求恰有1人的成績(jī)?cè)?/span>上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體,點(diǎn)是棱的中點(diǎn),設(shè)直線,直線.對(duì)于下列兩個(gè)命題:①過(guò)點(diǎn)有且只有一條直線、都相交;②過(guò)點(diǎn)有且只有一條直線、都成.以下判斷正確的是(

A.①為真命題,②為真命題B.①為真命題,②為假命題

C.①為假命題,②為真命題D.①為假命題,②為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為t為參數(shù)),直線過(guò)點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.

1)寫(xiě)出曲線C的極坐標(biāo)方程和直線的參數(shù)方程;

2)若直線l與曲線C交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為100001200015000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說(shuō)法錯(cuò)誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x),若對(duì)任意x1(,0),總存在x2使得,則實(shí)數(shù)a的范圍 _____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】依法納稅是每個(gè)公民應(yīng)盡的義務(wù),個(gè)人取得的所得應(yīng)依照《中華人民共和國(guó)個(gè)人所得稅法》向國(guó)家繳納個(gè)人所得稅(簡(jiǎn)稱個(gè)稅).201911日起,個(gè)稅稅額根據(jù)應(yīng)納稅所得額、稅率和速算扣除數(shù)確定,計(jì)算公式為:

個(gè)稅稅額=應(yīng)納稅所得額×稅率-速算扣除數(shù).

應(yīng)納稅所得額的計(jì)算公式為:

應(yīng)納稅所得額=綜合所得收入額-免征額-專項(xiàng)扣除-專項(xiàng)附加扣除-依法確定的其他扣除.

其中免征額為每年60000元,稅率與速算扣除數(shù)見(jiàn)下表:

級(jí)數(shù)

全年應(yīng)納稅所得額所在區(qū)間

稅率(

速算扣除數(shù)

1

3

0

2

10

2520

3

20

16920

4

25

31920

5

30

52920

6

35

85920

7

45

181920

備注:

專項(xiàng)扣除包括基本養(yǎng)老保險(xiǎn)、基本醫(yī)療保險(xiǎn)、失業(yè)保險(xiǎn)等社會(huì)保險(xiǎn)費(fèi)和住房公積金。

專項(xiàng)附加扣除包括子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等支出。

其他扣除是指除上述免征額、專項(xiàng)扣除、專項(xiàng)附加扣除之外,由國(guó)務(wù)院決定以扣除方式減少納稅的優(yōu)惠政策規(guī)定的費(fèi)用。

某人全年綜合所得收入額為160000元,假定繳納的基本養(yǎng)老保險(xiǎn)、基本醫(yī)療保險(xiǎn)、失業(yè)保險(xiǎn)等社會(huì)保險(xiǎn)費(fèi)和住房公積金占綜合所得收入額的比例分別是,,專項(xiàng)附加扣除是24000元,依法確定其他扣除是0元,那么他全年應(yīng)繳納綜合所得個(gè)稅____元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)如果方程有兩個(gè)不相等的解,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,棱長(zhǎng)為1的正方體中,是線段上的動(dòng)點(diǎn),則下列結(jié)論正確的是( ).

①異面直線所成的角為

③三棱錐的體積為定值

的最小值為2

A.①②③B.①②④C.③④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案