【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)如果方程有兩個(gè)不相等的解,且,證明:.
【答案】(1)見解析(2)見解析
【解析】
(1)對(duì)函數(shù)進(jìn)行求導(dǎo)得,再對(duì)進(jìn)行分類討論,解不等式,即可得答案;
(2)當(dāng)時(shí),在單調(diào)遞增,至多一個(gè)根,不符合題意;當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增,則.不妨設(shè),只要證,再利用函數(shù)的單調(diào)性,即可證得結(jié)論.
(1).
①當(dāng)時(shí),單調(diào)遞增;
②當(dāng)時(shí),單調(diào)遞減;
單調(diào)遞增.
綜上:當(dāng)時(shí),在單調(diào)遞增;
當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增.
(2)由(1)知,
當(dāng)時(shí),在單調(diào)遞增,至多一個(gè)根,不符合題意;
當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增,則.
不妨設(shè),
要證,即證,即證,即證.
因?yàn)?/span>在單調(diào)遞增,即證,
因?yàn)?/span>,所以即證,即證.
令
,
.
當(dāng)時(shí),單調(diào)遞減,又,
所以時(shí),,即,
即.
又,所以,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年7曰1日至3日,世界新能源汽車大會(huì)在海南博鰲召開,大會(huì)著眼于全球汽車產(chǎn)業(yè)的轉(zhuǎn)型升級(jí)和生態(tài)環(huán)境的持續(xù)改善.某汽車公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對(duì)100輛汽車進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠(yuǎn)里程)的測(cè)試.現(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如下的頻率分布直方圖:
(1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).
(2)根據(jù)大量的汽車測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問中樣本標(biāo)準(zhǔn)差的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.
參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布,則,,.
(3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在“勝利大本營(yíng)”,則可獲得購(gòu)車優(yōu)惠券.已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車車向前移動(dòng)一次,若擲出正面,遙控車向前移動(dòng)一格(從到),若擲出反面,遙控車向前移動(dòng)兩格(從到),直到遙控車移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束,設(shè)遙控車移到第n格的概率為,試說明是等比數(shù)列,并解釋此方案能否成功吸引顧客購(gòu)買該款新能源汽車.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓,若圓的一條切線與橢圓有兩個(gè)交點(diǎn),且.
(1)求圓的方程;
(2)已知橢圓的上頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于、兩點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)若,點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖,記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中的值,并估計(jì)該品種花苗綜合評(píng)分的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培駐外方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)計(jì)劃用兩張鐵絲網(wǎng)在一片空地上圍成一個(gè)梯形養(yǎng)雞場(chǎng),,,已知兩段是由長(zhǎng)為的鐵絲網(wǎng)折成,兩段是由長(zhǎng)為的鐵絲網(wǎng)折成.設(shè)上底的長(zhǎng)為,所圍成的梯形面積為.
(1)求S關(guān)于x的函數(shù)解析式,并求x的取值范圍;
(2)當(dāng)x為何值時(shí),養(yǎng)雞場(chǎng)的面積最大?最大面積為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足,且.
(1)求、、;
(2)求數(shù)列的通項(xiàng)公式;
(3)令,求數(shù)列的最大值與最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com