【題目】已知直線 , ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

①不論為何值時(shí), 都互相垂直;

②當(dāng)變化時(shí), 分別經(jīng)過定點(diǎn)A0,1)和B-1,0);

③不論為何值時(shí), 都關(guān)于直線對稱;

④如果交于點(diǎn),則的最大值是1;

其中,所有正確的結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4.

【答案】C

【解析】對于①,當(dāng)時(shí)兩條直線分別化為: ,此時(shí)兩條直線互相垂直,當(dāng)時(shí)兩條直線斜率分別為: ,滿足,此時(shí)兩條直線互相垂直,因此不論為何值時(shí), 都互相垂直,正確
對于②,當(dāng)變化時(shí),代入驗(yàn)證可得: 分別經(jīng)過定點(diǎn),正確;
對于由①可知:兩條直線交點(diǎn)在以為直徑的圓上,不一定在直線因此關(guān)于直線不一定對稱,不正確;
對于如果交于點(diǎn),由③可知: ,,所以的最大值是1,正確.
所有正確結(jié)論的個(gè)數(shù)是3.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題:

,則的逆否命題為真命題

函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件

③若為假命題,則均為假命題

④對于命題,,則為:,

其中真命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的左、右頂點(diǎn)分別為A,B,離心率為,點(diǎn)P1,)為橢圓上一點(diǎn).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)如圖,過點(diǎn)C01)且斜率大于1的直線l與橢圓交于M,N兩點(diǎn),記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點(diǎn)M(1,0)的直線與圓C交于AB兩點(diǎn)(Ax軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為

Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;

Ⅱ)設(shè)與曲線交于兩點(diǎn),與曲線交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在區(qū)間上的奇函數(shù),且,若對于任意的m,.

(1)判斷函數(shù)的單調(diào)性(不要求證明);

(2)解不等式

(3)若對于任意的,恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若上恒成立,求正數(shù)的取值范圍;

(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,△是等邊三角形,分別為的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若二面角的大小為,求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下三個(gè)關(guān)于圓錐曲線的命題中:

①設(shè)為兩個(gè)定點(diǎn),為非零常數(shù),若,則動點(diǎn)的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點(diǎn);

④已知拋物線,以過焦點(diǎn)的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案