【題目】某農(nóng)場(chǎng)有一塊等腰直角三角形的空地,其中斜邊的長(zhǎng)度為400米.為迎接“五一”觀(guān)光游,欲在邊界上選擇一點(diǎn),修建觀(guān)賞小徑,其中分別在邊界上,小徑與邊界的夾角都為.區(qū)域和區(qū)域內(nèi)種植郁金香,區(qū)域內(nèi)種植月季花.
(1)探究:觀(guān)賞小徑與的長(zhǎng)度之和是否為定值?請(qǐng)說(shuō)明理由;
(2)為深度體驗(yàn)觀(guān)賞,準(zhǔn)備在月季花區(qū)域內(nèi)修建小徑,當(dāng)點(diǎn)在何處時(shí),三條小徑的長(zhǎng)度和最?
【答案】(1)為定值,理由見(jiàn)解析;(2)是的中點(diǎn).
【解析】
(1)根據(jù)題意可得,結(jié)合正弦定理可分別用表示出與,即可確定是否為定值;
(2)在中,由余弦定理可表示出,結(jié)合基本不等式即可得,根據(jù)(1)中為定值,即可知不等式取等號(hào)的條件,進(jìn)而確定點(diǎn)的位置及三條小徑的長(zhǎng)度和.
(1)為等腰直角三角形,小徑與邊界的夾角都為,
在中,所以,
故由正弦定理可得,
即.
同理.
故
為定值.
(2)在中,由余弦定理可得,
即,
所以,.
又由(1)有,
故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
故當(dāng)點(diǎn)的中點(diǎn)位置時(shí),三條小徑的長(zhǎng)度和最小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線(xiàn)是以原點(diǎn)O為中心、為焦點(diǎn)的橢圓的一部分,曲線(xiàn)是以O為頂點(diǎn)、為焦點(diǎn)的拋物線(xiàn)的一部分,A是曲線(xiàn)和的交點(diǎn)且為鈍角,若,.
(1)求曲線(xiàn)和的方程;
(2)過(guò)作一條與軸不垂直的直線(xiàn),分別與曲線(xiàn)依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問(wèn)是否為定值?若是求出定值;若不是說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點(diǎn),OD⊥PC.
(Ⅰ) 求證:OC⊥PD;
(II)若PD與平面PAB所成的角為30°,求二面角D-PC-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年初,新冠肺炎疫情襲擊全國(guó),對(duì)人民生命安全和生產(chǎn)生活造成嚴(yán)重影響.在黨和政府強(qiáng)有力的抗疫領(lǐng)導(dǎo)下,我國(guó)控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復(fù)工復(fù)產(chǎn),減輕經(jīng)濟(jì)下降對(duì)企業(yè)和民眾帶來(lái)的損失.為降低疫情影響,某廠(chǎng)家擬在2020年舉行某產(chǎn)品的促銷(xiāo)活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷(xiāo)售量(即該廠(chǎng)的年產(chǎn)量)萬(wàn)件與年促銷(xiāo)費(fèi)用萬(wàn)元()滿(mǎn)足(為常數(shù)),如果不搞促銷(xiāo)活動(dòng),則該產(chǎn)品的年銷(xiāo)售量只能是2萬(wàn)件.已知生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)一萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠(chǎng)家將每件產(chǎn)品的銷(xiāo)售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(此處每件產(chǎn)品年平均成本按元來(lái)計(jì)算)
(1)將2020年該產(chǎn)品的利潤(rùn)萬(wàn)元表示為年促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(2)該廠(chǎng)家2020年的促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠(chǎng)家的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米兩斗五升.問(wèn),米幾何?”如圖是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,若輸出的S=4(單位:升),則輸入k的值為( 。
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知具有線(xiàn)性相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:
2 | 4 | 6 | 8 | 10 | |
3 | 6 | 7 | 10 | 12 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程,并估計(jì)當(dāng)時(shí), 的值;
(2)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取2個(gè)點(diǎn),求恰有1個(gè)點(diǎn)落在直線(xiàn)右下方的概率.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且截拋物線(xiàn)的準(zhǔn)線(xiàn)所得弦長(zhǎng)為.
(1)求該橢圓的方程;
(2)若過(guò)點(diǎn)的直線(xiàn)與橢圓相交于, 兩點(diǎn),且點(diǎn)恰為弦的中點(diǎn),求直線(xiàn)的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com